A simplified control system is described which uses only three point calibration to maintain the wavelength of the ITU channels of an uncooled DS-DBR laser, spaced at 50GHz, over the full C-band. Wavelength is controlled mode-hop free over a temperature range of 45° to 80°C.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.22.024405DOI Listing

Publication Analysis

Top Keywords

high temperature
4
temperature operation
4
operation athermal
4
athermal tuneable
4
tuneable laser
4
laser simplified
4
simplified wavelength
4
wavelength control
4
control wdm-pon
4
wdm-pon systems
4

Similar Publications

Background: Streptococcal Toxic Shock Syndrome (STSS) is a life-threatening condition caused by bacterial toxins. The STSS triad encompasses high fever, hypotensive shock, and a "sunburn-like" rash with desquamation. STSS, like Toxic Shock Syndrome (TSS), is a rare complication of streptococcal infec-tions caused by Group A Streptococcus (GAS), Streptococcal pyogenes (S.

View Article and Find Full Text PDF

Colloidal chemistry provides an assortment of synthetic tools for tuning the shape of semiconductor nanocrystals. To fully exploit the shape- and structure-dependent properties of semiconductor nanorods, high-precision control on growth and design is essential. However, achieving this precision is highly challenging due to the high temperatures (>350 °C) and short reaction times (<8 minutes) often required for these reactions.

View Article and Find Full Text PDF

Laser surface alloying of Fe, Si, and C on aluminium is demonstrated using a Q-switched Nd:YAG laser as the source of energy. The fundamental wavelength of the laser beam was 1064 nm with an output energy of 100 mJ and a pulse duration of 10 ns. The exposure was conducted in repetitive mode with a frequency rate of 1 Hz.

View Article and Find Full Text PDF

Activating H molecules into atomic hydrogen and utilizing their intrinsic chemical reactivity are important processes in catalytic hydrogenation. Here, we have developed a plasma-catalyst combined system that directly provides atomic hydrogen from the gas phase to the catalytic reaction to utilize the high energy and translational freedom of atomic hydrogen. In this system, we show that the temperature of CO methanation over Ni/AlO can be dramatically lower compared to thermal catalysis.

View Article and Find Full Text PDF

The total oxidation of -hexane, a hazardous volatile organic compound (VOC) emitted by the pharmaceutical industry, presents a significant environmental challenge due to limited catalyst activity at low temperatures and poor stability at high temperatures. Here, we present a novel approach that overcomes these limitations by employing single-atom Ag/MnO catalysts coupled with nonthermal plasma (NTP). This strategy achieves exceptional performance in -hexane oxidation at low temperatures, demonstrating 96.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!