We demonstrate a novel polarization maintaining hollow-core photonic bandgap fiber geometry that reduces the impact of surface modes on fiber transmission. The cladding structure is modified with a row of partially collapsed holes to strip away unwanted surface modes. A theoretical investigation of the surface mode stripping is presented and compared to the measured performance of four 7-cells core fibers that were drawn with different collapse ratio of the defects. The varying pressure along the defect row in the cladding during drawing introduces an ellipticity of the core. This, combined with the presence of antiresonant features on the core wall, makes the fibers birefringent, with excellent polarization maintaining properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.22.023324 | DOI Listing |
Mode-selective converters (MSCs) play an indispensable role in mode division multiplexing (MDM) systems, and the commonly used cascaded waveguide-based MSCs not only have a relatively large size but also increase the insertion loss and mode crosstalk during the conversion process. In this paper, a parallel six-mode-selective converter (6-MSC) is proposed to enhance the integration of the device, which consists of a photonic crystal fiber (PCF) and six step-index fibers (SIFs). Here, a PCF without any holes in the cladding is proposed.
View Article and Find Full Text PDFAdvancements in plasmonic sensing require simultaneous detection capability that ensures large-scale detection with reduced losses. In this work, we propose a new solid-core fiber-based refractive index (RI) sensor with an ultra-broad detection range. The proposed fiber consists of a relatively simple single-ring cladding with six circular tubes in which the light is guided in the core based on the inhibited-coupling (IC) mechanism.
View Article and Find Full Text PDFWe report the radiation-induced darkening (RD) effect caused by X-ray radiation and the bleaching effect caused by D/H/N loading in self-developed Yb-doped large mode-area photonic crystal fibers (LMA PCFs). The decrease in the slope efficiency caused by irradiation decays exponentially with an increase in the X-ray radiation doses, and the radiation-induced gain variation (RIGV) showed a linear decay trend with increasing irradiation doses. The slope efficiency of Yb-doped LMA PCF, which significantly degraded from 71.
View Article and Find Full Text PDFFlexible infrared image fiber bundles (FBs) are capable of delivering thermal images of areas that are difficult for ordinary thermal cameras to access while making the imaging systems compact and lightweight. Thus, FB-based thermal imaging systems show great potential in some important applications, such as infrared endoscopy, aircraft infrared warning, and satellite remote sensing. In most applications, FBs are required to have high overall transmittance (OT) and high spatial resolution (), but the fabrication of such high-performance FBs is still a challenge.
View Article and Find Full Text PDFDual-parameter temperature and humidity sensors based on optical fiber sensing have wide applications. Among various optical fiber sensors, surface plasmon resonance (SPR) sensors exhibit excellent sensing sensitivity. To address the bandwidth issue and expand the sensitivity, this paper proposes a multimode fiber-no core fiber (MMF-NCF) SPR sensor.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!