A thermomechanical model is developed to estimate the stress response of an oxide coating to elevated-temperature chemical cleaning. Using a hafnia-silica multilayer dielectric pulse compressor grating as a case study, we demonstrate that substrate thickness can strongly affect the thermal stress response of the thin-film coating. As a result, coatings on large, thick substrates may be susceptible to modes of stress-induced failure (crazing or delamination) not seen in small parts. We compare the stress response of meter-scale optics to the behavior of small-scale test or "witness" samples, which are expected to be representative of their full-size counterparts. The effects of materials selection, solution temperature, and heating/cooling rates are explored. Extending the model to other situations, thermal stress results are surveyed for various combinations of commonly used materials. Seven oxide coatings (hafnia, silica, tantala, niobia, alumina, and multilayers of hafnia-silica and alumina-silica) and three glass substrates (BK7, borosilicate float glass, and fused silica) are examined to highlight some interesting results.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.53.005865DOI Listing

Publication Analysis

Top Keywords

stress response
12
thermomechanical model
8
thermal stress
8
model assess
4
assess stresses
4
stresses developed
4
developed elevated-temperature
4
elevated-temperature cleaning
4
cleaning coated
4
coated optics
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!