A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Spectral-resolved multifocal multiphoton microscopy with multianode photomultiplier tubes. | LitMetric

Multiphoton excitation fluorescence microscopy is the preferred method for in vivo deep tissue imaging. Many biological applications demand both high imaging speed and the ability to resolve multiple fluorophores. One of the successful methods to improve imaging speed in a highly turbid specimen is multifocal multiphoton microscopy (MMM) based on use of multi-anode photomultiplier tubes (MAPMT). This approach improves imaging speed by using multiple foci for parallelized excitation without sacrificing signal to noise ratio (SNR) due to the scattering of emission photons. In this work, we demonstrate that the MAPMT based MMM can be extended with spectral resolved imaging capability. Instead of generating multiple excitation foci in a 2D grid pattern, a linear array of foci is generated. This leaves one axis of the 2D MAPMT available for spectral dispersion and detection. The spectral-resolved MMM can detect several emission signals simultaneously with high imaging speed optimized for high-throughput, high-contents applications. The new procedure is illustrated using imaging data from the kidney, peripheral nerve regeneration and dendritic morphological data from the brain.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4247179PMC
http://dx.doi.org/10.1364/OE.22.021368DOI Listing

Publication Analysis

Top Keywords

imaging speed
16
multifocal multiphoton
8
multiphoton microscopy
8
photomultiplier tubes
8
high imaging
8
imaging
7
spectral-resolved multifocal
4
microscopy multianode
4
multianode photomultiplier
4
tubes multiphoton
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!