Estrogen-induced CCN1 is critical for establishment of endometriosis-like lesions in mice.

Mol Endocrinol

Departments of Molecular and Integrative Physiology (Y.Z., B.S.K., M.K.B.) and Comparative Biosciences (Q.L., I.C.B.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801; Department of Biochemistry and Molecular Genetics (L.F.L.), University of Illinois College of Medicine, Chicago, Illinois 60637; and Department of Obstetrics and Gynecology (R.N.T.), Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157.

Published: December 2014

Endometriosis is a prevalent gynecological disorder in which endometrial tissue proliferates in extrauterine sites, such as the peritoneal cavity, eventually giving rise to painful, invasive lesions. Dysregulated estradiol (E) signaling has been implicated in this condition. However, the molecular mechanisms that operate downstream of E in the ectopic endometrial tissue are unknown. To investigate these mechanisms, we used a mouse model of endometriosis. Endometrial tissue from donor mice was surgically transplanted on the peritoneal surface of immunocompetent syngeneic recipient mice, leading to the establishment of cystic endometriosis-like lesions. Our studies revealed that treatment with E led to an approximately 3-fold increase in the lesion size within a week of transplantation. E also caused a concomitant stimulation in the expression of connective tissue growth factor/Cyr61/Nov (CCN1), a secreted cysteine-rich matricellular protein, in the lesions. Interestingly, CCN1 is highly expressed in human ectopic endometriotic lesions. To address its role in endometriosis, endometrial tissue from Ccn1-null donor mice was transplanted in wild-type recipient mice. The resulting ectopic lesions were reduced up to 75% in size compared with wild-type lesions due to diminished cell proliferation and cyst formation. Notably, loss of CCN1 also disrupted the development of vascular networks in the ectopic lesions and reduced the expression of several angiogenic factors, such as vascular endothelial growth factor-A and vascular endothelial growth factor-C. These results suggest that CCN1, acting downstream of E, critically controls cell proliferation and neovascularization, which support the growth and survival of endometriotic tissue at ectopic sites. Blockade of CCN1 signaling during the early stages of lesion establishment may provide a therapeutic avenue to control endometriosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4250364PMC
http://dx.doi.org/10.1210/me.2014-1080DOI Listing

Publication Analysis

Top Keywords

endometrial tissue
16
lesions
8
endometriosis-like lesions
8
endometriosis endometrial
8
donor mice
8
recipient mice
8
ectopic lesions
8
lesions reduced
8
cell proliferation
8
vascular endothelial
8

Similar Publications

Endometriosis is a chronic disease characterised by the presence of endometrial tissue outside the uterine cavity, affecting 5-15% of women, especially those of reproductive age. The disease may manifest itself as dysmenorrhoea, dyspareunia, sterility and chronic pelvic pain, among other symptoms. Although it is not malignant, it shares some characteristics with cancer and can lead to epithelial ovarian carcinoma.

View Article and Find Full Text PDF

Background: Endometriosis is a chronic disease characterized by endometrial-like tissue outside the uterus. Superficial endometriosis (SE) is the most prevalent form, yet it remains underdiagnosed due to subtle clinical and imaging presentations. Traditionally, diagnosis relies on laparoscopy, which is relatively invasive and often contributes to diagnostic delay.

View Article and Find Full Text PDF

Endometriosis is an estrogen-dependent benign disease characterized by growth of the endometrial tissue outside the uterine wall. Several reports suggest the possibility of the pathogenesis and recurrence of endometriosis being related to functions of stem/progenitor cells of the endometrium. The drawback of the widely used method of using Hoechst 33342, a fluorescent dye, to collect stem cell-like populations, is the requirement of an ultraviolet (UV) excitation source not commonly provided on standard flow cytometers.

View Article and Find Full Text PDF
Article Synopsis
  • PFOS is a chemical frequently used in industries that can enter the environment and is resistant to breakdown, leading to health concerns.
  • Recent studies show a link between PFOS exposure in humans and various diseases, highlighting its impact on human health.
  • Research indicates that PFOS negatively affects endometrial cell function and morphology, potentially leading to issues with embryo implantation due to mitochondrial damage and alterations in key protein expression.
View Article and Find Full Text PDF

Purpose: This case report aims to present a rare case of endometrial carcinosarcoma, a highly malignant tumor with a poor prognosis. The primary objective is to describe this unique case's clinical presentation, multimodal magnetic resonance imaging (MRI) features, typical histopathological characteristics and surgical treatment.

Methods: A detailed analysis of the patient's medical history, preoperative imaging evaluation, and treatment approach was conducted.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!