We demonstrate the first SDN-controlled optical topology-reconfigurable mobile fronthaul (MFH) architecture for bidirectional coordinated multipoint (CoMP) and low latency inter-cell device-to-device (D2D) connectivity in the 5G mobile networking era. SDN-based OpenFlow control is used to dynamically instantiate the CoMP and inter-cell D2D features as match/action combinations in control plane flow tables of software-defined optical and electrical switching elements. Dynamic re-configurability is thereby introduced into the optical MFH topology, while maintaining back-compatibility with legacy fiber deployments. 10 Gb/s peak rates with <7 μs back-to-back transmission latency and 29.6 dB total power budget are experimentally demonstrated, confirming the attractiveness of the new approach for optical MFH of future 5G mobile systems.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.22.020809DOI Listing

Publication Analysis

Top Keywords

mobile fronthaul
8
architecture bidirectional
8
comp low
8
low latency
8
latency inter-cell
8
inter-cell d2d
8
sdn-controlled topology-reconfigurable
4
optical
4
topology-reconfigurable optical
4
mobile
4

Similar Publications

With the deployment of the fifth-generation (5 G) emerging technologies, such as massive multiple-input multiple-output (mMIMO), conventional mobile fronthaul (FH) schemes based on Common Public Radio Interface (CPRI) are limited in their abilities to support ultra-high data rate, large bandwidth and massive connectivity. This has led to a growing demand for alternative solutions that can better fulfill these requirements. Visible light communication (VLC) has recently gained increasing research interest as a potential complementary technology for beyond-5 G communication, offering advantages such as unlicensed and abundant spectrum, high bandwidth and cost-efficiency.

View Article and Find Full Text PDF

Analog radio-over-fiber (A-RoF) solutions for mobile fronthaul are regaining wide attention due to their high spectral efficiency and low complexity. However, the performance of A-RoF is usually limited by the fiber link fidelity. In this Letter, we propose and experimentally demonstrate an optical continuous pulse position modulation-based analog radio-over-fiber (OCPPM-RoF) scheme, in which the amplitudes of wireless waveforms are mapped to the time-domain positions of optical pulses to decouple the additive noise.

View Article and Find Full Text PDF

In this Letter, we experimentally demonstrate digital mobile fronthaul (MFH) for 65536 quadrature amplitude modulation (65536-QAM) signals based on a diff-delta-sigma modulation (D-DSM) scheme with orthogonal circulant matrix transform (OCT) precoding. By combining the D-DSM scheme with OCT precoding, we successfully solved the problem of uneven distribution of in-band quantization noise (IBN) while bringing about a quantization SNR gain of about 1.5 dB.

View Article and Find Full Text PDF

Broadband amplified spontaneous emission (ASE) light sources are recognized for their cost-effective generation. However, their inherent high-intensity noise and the stringent requirement for time delay matching limits their widespread application in coherent optical telecommunication. Here we propose a broadband ASE source-enabled digital-analog radio-over-fiber (DA-RoF) mobile fronthaul architecture, leveraging semiconductor optical amplifiers (SOAs) and multicore fiber in tandem.

View Article and Find Full Text PDF

The urgent demand for high-bandwidth wireless services in enhanced mobile broadband networks needs innovative solutions for mobile front-haul systems. The terahertz (THz) band offers a promising candidate for ultrahigh-capacity data transmission. This study investigates the integration of photonics-aided THz signal generation with MIMO and PDM technologies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!