In this contribution, we implement two techniques to reinforce optical encryption, which we restrict in particular to the QR codes, but could be applied in a general encoding situation. To our knowledge, we present the first experimental-positional optical scrambling merged with an optical encryption procedure. The inclusion of an experimental scrambling technique in an optical encryption protocol, in particular dealing with a QR code "container", adds more protection to the encoding proposal. Additionally, a nonlinear normalization technique is applied to reduce the noise over the recovered images besides increasing the security against attacks. The opto-digital techniques employ an interferometric arrangement and a joint transform correlator encrypting architecture. The experimental results demonstrate the capability of the methods to accomplish the task.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.22.020268DOI Listing

Publication Analysis

Top Keywords

optical encryption
16
experimental scrambling
8
optical
5
scrambling noise
4
noise reduction
4
reduction applied
4
applied optical
4
encryption
4
encryption codes
4
codes contribution
4

Similar Publications

Long Persistent Luminescence in Cu-Doped SrGaGeO for Information Storage and Encryption.

Inorg Chem

January 2025

Center of Advanced Optoelectronic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China.

Information storage and encryption are the key technologies for modern information transmission. However, most optical information storage technologies based on long persistent luminescent (PersL) only have one fixed response mode, which is easy to imitate, limiting their security in advanced information storage and encryption applications. Besides, the cost of rare earth-doped PersL materials restricts their wide application.

View Article and Find Full Text PDF

All-Optical Single-Channel Plasmonic Logic Gates.

Nano Lett

January 2025

State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China.

Optical computing, renowned for its light-speed processing and low power consumption, typically relies on the coherent control of two light sources. However, there are challenges in stabilizing and maintaining high optical spatiotemporal coherence, especially for large-scale computing systems. The coherence requires rigorous feedback circuits and numerous phase shifters, introducing system instability and complexity.

View Article and Find Full Text PDF

3D printing hydrogel with homogeneous structural color induced by ZnS colloidal spheres for customized multi-channel spatial information encryption.

J Colloid Interface Sci

January 2025

State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2# Linggong Road, Dalian 116024, China. Electronic address:

The utilization of structural colors in 3D printing was anticipated due to their eco-friendliness and sustainability. However, the manufacturing of homogeneous structural colors with intricate 3D architectures remains a great challenge, particularly in hydrogels. Herein, we added 0.

View Article and Find Full Text PDF

Visible-Light-Driven Fluorescence Turn-on Photoswitches With Near Quantitative Photocyclization Yield.

Adv Sci (Weinh)

January 2025

School of Materials Science and Engineering, Zhengzhou University, No.100 Science Avenue, Zhengzhou, 450001, P. R. China.

Photoswitchable fluorescent materials have gained significant attention for their potential in advanced information encryption and anti-counterfeiting applications. However, the common use of UV light to trigger the isomerization processes leads to photobleaching and poor fatigue resistance. Visible-light-driven fluorescent photoswitches are highly desirable, but achieving high cyclization yield remains challenging.

View Article and Find Full Text PDF

Developing single-particle nanocomposite with aqueous-phase orthogonal multicolor phosphorescence or multimodal luminescence holds great significance for optical coding, anti-counterfeiting encryption, bioimaging, and biosensing. However, it faces challenges such as a limited range of emission wavelengths and difficulties in controlling the synthesis process. In this work, a conjugate structure manipulation integrated luminophor confinement strategy is proposed to prepare carbon dots@upconversion nanoparticles (CDs@UCNPs) featuring aqueous-phase orthogonal multicolor room-temperature phosphorescence-upconversion luminescence (RTP-UCL) through wet-chemical synthetic methods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!