Optical bistability (OB) and optical multistability (OM) behavior in molecular magnets is theoretically studied. It is demonstrated that the OB of the system can be controlled via adjusting the magnetic field intensity. In addition, it is shown that the frequency detuning of probe and coupling fields, as well as the cooperation parameter, has remarkable effects on the OB behavior of the system. Also, we find that OB can be converted to OM through the magnitude of control-field detuning. Our results can be used as a guideline for optimizing and controlling the switching process in the crystal of molecular magnets.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.53.005391 | DOI Listing |
Chem Sci
January 2025
Department of Chemical Engineering and Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology 5600 MB Eindhoven The Netherlands
Using photoswitchable molecules to manipulate supramolecular interactions under light illumination has driven advancements in numerous fields, allowing for the strategic alteration of molecular systems. However, integrating the moiety responsible for these interactions into the photochromic scaffold can be complex and may hamper the switching efficiency. We thus explored a simple class of organic molecules, namely thiosemicarbazones, featuring both a photoisomerizable C[double bond, length as m-dash]N double bond and a thiourea moiety capable of hydrogen bonding.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, Bratislava SK-842 15, Slovakia.
The development of new photochromic systems is motivated by the possibility of controlling the properties and functions of materials with high spatial and temporal resolution in a reversible manner. While there are several classes of photoswitches operating in solution, the design of systems efficiently operating in the solid state remains highly challenging, mainly due to limitations related to confinement effects. Triaryl-hydrazones represent a relatively new subclass of bistable hydrazone photoswitches exhibiting efficient / photochromism in solution.
View Article and Find Full Text PDFPhys Rev E
November 2024
William H. Miller III Department of Physics and Astronomy, Johns Hopkins University, Baltimore 21218, USA.
Composite materials made of polymers and liquid crystals have been widely employed in smart windows, optical filters, and bistable displays. However, it is often difficult to decipher the role of the polymer network architecture on the alignment and the texture of liquid crystals. In this study, we use a simple model system where a small amount of polymerizable liquid crystalline monomer is mixed in a liquid crystal that exhibits both a smectic phase and a cholesteric phase with a large helical pitch.
View Article and Find Full Text PDFNanophotonics
July 2024
University of Southampton, Southampton, UK.
Optically levitated multiple nanoparticles have emerged as a platform for studying complex fundamental physics such as non-equilibrium phenomena, quantum entanglement, and light-matter interaction, which could be applied for sensing weak forces and torques with high sensitivity and accuracy. An optical trapping landscape of increased complexity is needed to engineer the interaction between levitated particles beyond the single harmonic trap. However, existing platforms based on spatial light modulators for studying interactions between levitated particles suffered from low efficiency, instability at focal points, the complexity of optical systems, and the scalability for sensing applications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!