Studying dynamic fragmentation in shock-loaded metals and evaluating the geometrical and kinematical properties of the resulting fragments are of significant importance in shock physics, material science as well as microstructural modeling. In this paper, we performed the laser-driven shock-loaded experiment on the Shenguang-Ш (SGШ) prototype laser facility, and employed X-ray micro-tomography technique to give a whole insight into the actual fragmentation process. To investigate the size distribution of the soft recovered fragments from Poly 4-methyl-1-pentene (PMP) foam sample, we further developed an automatic analysis approach based on the improved watershed segmentation. Comparison results of segmenting fragments in slices with different methods demonstrated that our proposed segmentation method can overcome the drawbacks of under-segmentation and over-segmentation, and has the best performance in both segmentation accuracy and robustness. With the proposed automatic analysis approach, other parameters such as the position distribution and penetration depth are also obtained, which are very helpful for understanding the dynamic failure mechanisms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.22.018924 | DOI Listing |
X-ray backlighting is been widely used today in dynamic phenomena observation. By applying proper synchronizing techniques, the in-situ data of the intensity distribution of the fragments in laser-driven shock-loaded aluminum were obtained for a particular moment using x-ray backlighting imaging. The image resolution was better than 40 µm in this context by introducing a pinhole.
View Article and Find Full Text PDFStudying dynamic fragmentation in shock-loaded metals and evaluating the geometrical and kinematical properties of the resulting fragments are of significant importance in shock physics, material science as well as microstructural modeling. In this paper, we performed the laser-driven shock-loaded experiment on the Shenguang-Ш (SGШ) prototype laser facility, and employed X-ray micro-tomography technique to give a whole insight into the actual fragmentation process. To investigate the size distribution of the soft recovered fragments from Poly 4-methyl-1-pentene (PMP) foam sample, we further developed an automatic analysis approach based on the improved watershed segmentation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!