This paper presents an indirect time-of-flight (TOF) measurement technique with an impulse photocurrent response of a lock-in pixel. By using a short-pulse laser, the generated photocurrent can be presumed to be an impulse response. This facilitates the utilization of the full high-speed performance of the photodetector and gives high range resolution. As a proof-of-concept, a test chip with a lock-in pixel based on draining-only modulation was implemented using 0.11 μm CMOS image-sensor technology. The test chip achieved a range resolution of 0.29 mm in a 50-mm measurable range, which corresponds to a time resolution of 1.9 ps and the successful acquisition of a 3-mm example step.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.22.018904DOI Listing

Publication Analysis

Top Keywords

indirect time-of-flight
8
measurement technique
8
technique impulse
8
impulse photocurrent
8
photocurrent response
8
lock-in pixel
8
range resolution
8
test chip
8
time-of-flight measurement
4
response sub-millimeter
4

Similar Publications

For indirect time-of-flight (iToF) cameras, we proposed a modeling approach focused on addressing random error. Our model characterizes random error comprehensively by detailing the propagation of error introduced by signal light, ambient light, and dark noise through phase calculation and system correction processes. This framework leverages correlations between incident light and tap responses to quantify noise impacts accurately.

View Article and Find Full Text PDF

Deep and accurate proteome analysis is crucial for understanding cellular processes and disease mechanisms; however, it is challenging to implement in routine settings. In this protocol, we combine a robust chromatographic platform with a high-performance mass spectrometric setup to enable routine yet in-depth proteome coverage for a broad community. This entails tip-based sample preparation and pre-formed gradients (Evosep One) combined with a trapped ion mobility time-of-flight mass spectrometer (timsTOF, Bruker).

View Article and Find Full Text PDF

Triptorelin, a synthetic gonadotrophin-releasing hormone (GnRH), is mainly used in the clinical treatment of prostate cancer. The mechanism initially stimulates luteinizing hormone (LH) and testosterone secretion followed by suppression, resulting in a reduction in cancer progression. However, GnRHs are prohibited in doping control because of the indirect surge of LH and testosterone.

View Article and Find Full Text PDF

Ultrasonic time-of-flight diffraction (TOFD) technique is applied to non-destructive testing in engineering, but the dead zone influences its applicable range. Alternative TOFD techniques adopt the indirect diffracted waves having long propagation times to decouple from the lateral wave and detect near-surface defects. It should be noted that the applicability of these diffracted waves varies with parameter conditions employed for detection, e.

View Article and Find Full Text PDF
Article Synopsis
  • Thin film photodiodes (TFPD), especially those made from halide perovskites, offer excellent optoelectronic properties, such as high absorption and fast charge transport, making them superior to other thin-film options.
  • The study showcases how integrating perovskite photodiodes with silicon read-out integrated circuits (ROIC) enables high-resolution 2D imaging and facilitates 3D imaging through advanced techniques like time-of-flight sensing.
  • This development presents a major advancement in TFPD technology, with potential applications in areas such as automotive systems, augmented reality (AR), and virtual reality (VR).
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!