The entorhinal cortex (ERC) and the perirhinal cortex (PRC) are subregions of the medial temporal lobe (MTL) that play important roles in episodic memory representations, as well as serving as a conduit between other neocortical areas and the hippocampus. They are also the sites where neuronal damage first occurs in Alzheimer's disease (AD). The ability to automatically quantify the volume and thickness of the ERC and PRC is desirable because these localized measures can potentially serve as better imaging biomarkers for AD and other neurodegenerative diseases. However, large anatomical variation in the PRC makes it a challenging area for analysis. In order to address this problem, we propose an automatic segmentation, clustering, and thickness measurement approach that explicitly accounts for anatomical variation. The approach is targeted to highly anisotropic (0.4x0.4x2.0mm3 ) T2-weighted MRI scans that are preferred by many authors for detailed imaging of the MTL, but which pose challenges for segmentation and shape analysis. After automatically labeling MTL substructures using multi-atlas segmentation, our method clusters subjects into groups based on the shape of the PRC, constructs unbiased population templates for each group, and uses the smooth surface representations obtained during template construction to extract regional thickness measurements in the space of each subject. The proposed thickness measures are evaluated in the context of discrimination between patients with Mild Cognitive Impairment (MCI) and normal controls (NC).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4348087 | PMC |
http://dx.doi.org/10.1007/978-3-319-10443-0_11 | DOI Listing |
Cancers (Basel)
December 2024
Department of Clinical Laboratory, Shikoku Cancer Center, Matsuyama 791-0245, Japan.
Background: The diagnostic challenges presented by hyperchromatic crowded cell groups (HCGs) in cervical cytology often result in either overdiagnosis or underdiagnosis due to their densely packed, three-dimensional structures. The objective of this study is to characterize the structural differences among HSIL-HCGs, AGC-HCGs, and NILM-HCGs using quantitative texture analysis metrics, with the aim of facilitating the differentiation of benign from malignant cases.
Methods: A total of 585 HCGs images were analyzed, with assessments conducted on 8-bit gray-scale value, thickness, skewness, and kurtosis across various groups.
BMC Plant Biol
January 2025
Republic of Türkiye, Ministry of Agriculture and Forestry, General Directorate of Agricultural Research and Policies, Hatay Olive Research Institute Directorate, Hassa Station, Hassa, 31700, Hatay, Türkiye.
Background: Ficus johannis subsp. afghanistanica (Warb.) Browicz is an important plant species belonging to the Moraceae family and is part of the Ficus genus.
View Article and Find Full Text PDFSci Rep
January 2025
Multifunctional Materials Laboratory, Department of Physics, Indian Institute of Technology Madras, Chennai, 600036, India.
The utilization of single crystals is exponentially growing in optoelectronic devices due to their exceptional benefits, including high phase purity and the absence of grain boundaries. However, achieving single crystals with a porous structure poses significant challenges. In this study, we present a method for fabricating porous single crystals (porous-SC) of CsAgBiBr and related halide double perovskites using an infrared-assisted spin coating technique.
View Article and Find Full Text PDFActa Biomater
January 2025
School of Life Sciences, Keele University, Staffordshire, UK. Electronic address:
The ability to control the growth and orientation of neurites over long distances has significant implications for regenerative therapies and the development of physiologically relevant brain tissue models. In this study, the forces generated on magnetic nanoparticles internalised within intracellular endosomes are used to direct the orientation of neuronal outgrowth in cell cultures. Following differentiation, neurite orientation was observed after 3 days application of magnetic forces to human neuroblastoma (SH-SY5Y) cells, and after 4 days application to rat cortical primary neurons.
View Article and Find Full Text PDFCirc Res
January 2025
Department of Integrative Pathophysiology, Medical Faculty Mannheim, DZHK Partnersite Mannheim-Heidelberg, University of Heidelberg, Germany (S.L.).
This review examines the giant elastic protein titin and its critical roles in heart function, both in health and disease, as discovered since its identification nearly 50 years ago. Encoded by the TTN (titin gene), titin has emerged as a major disease locus for cardiac disorders. Functionally, titin acts as a third myofilament type, connecting sarcomeric Z-disks and M-bands, and regulating myocardial passive stiffness and stretch sensing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!