Regulatory T cells in central nervous system injury: a double-edged sword.

J Immunol

Center for Brain Immunology and Glia, School of Medicine, University of Virginia, Charlottesville, VA 22908; Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22908; Graduate Program in Neuroscience, University of Virginia, Charlottesville, VA 22908, Medical Scientist Training Program, School of Medicine, University of Virginia, Charlottesville, VA 22908;

Published: November 2014

Previous research investigating the roles of T effector (T(eff)) and T regulatory (T(reg)) cells after injury to the CNS has yielded contradictory conclusions, with both protective and destructive functions being ascribed to each of these T cell subpopulations. In this work, we study this dichotomy by examining how regulation of the immune system affects the response to CNS trauma. We show that, in response to CNS injury, T(eff) and T(reg) subsets in the CNS-draining deep cervical lymph nodes are activated, and surgical resection of these lymph nodes results in impaired neuronal survival. Depletion of T(reg), not surprisingly, induces a robust T(eff) response in the draining lymph nodes and is associated with impaired neuronal survival. Interestingly, however, injection of exogenous T(reg) cells, which limits the spontaneous beneficial immune response after CNS injury, also impairs neuronal survival. We found that no T(reg) accumulate at the site of CNS injury, and that changes in T(reg) numbers do not alter the amount of infiltration by other immune cells into the site of injury. The phenotype of macrophages at the site, however, is affected: both addition and removal of T(reg) negatively impact the numbers of macrophages with alternatively activated (tissue-building) phenotype. Our data demonstrate that neuronal survival after CNS injury is impaired when T(reg) cells are either removed or added. With this exacerbation of neurodegeneration seen with both addition and depletion of T(reg), we recommend exercising extreme caution when considering the therapeutic targeting of T(reg) cells after CNS injury, and possibly in chronic neurodegenerative conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4225170PMC
http://dx.doi.org/10.4049/jimmunol.1302401DOI Listing

Publication Analysis

Top Keywords

cns injury
20
treg cells
16
neuronal survival
16
response cns
12
lymph nodes
12
treg
10
injury
8
impaired neuronal
8
depletion treg
8
cns
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!