Apolipoprotein E4 produced in GABAergic interneurons causes learning and memory deficits in mice.

J Neurosci

Gladstone Institute of Neurological Disease, San Francisco, California 94158, Department of Neurology and Biomedical Science Program, University of California, San Francisco, California 94143, Gladstone Institute of Cardiovascular Disease, San Francisco, California 94158, and Department of Pathology, University of California, San Francisco, California 94143

Published: October 2014

AI Article Synopsis

  • ApoE4 is linked to cognitive decline and is a significant genetic risk factor for Alzheimer's disease (AD).
  • Research using mouse models showed that removing apoE4 from astrocytes didn’t prevent learning and memory issues, but removing it from neurons did offer protection.
  • The study identifies GABAergic interneurons as critical in the negative effects of apoE4, suggesting they could be a new target for AD treatments.

Article Abstract

Apolipoprotein (apo) E4 is expressed in many types of brain cells, is associated with age-dependent decline of learning and memory in humans, and is the major genetic risk factor for AD. To determine whether the detrimental effects of apoE4 depend on its cellular sources, we generated human apoE knock-in mouse models in which the human APOE gene is conditionally deleted in astrocytes, neurons, or GABAergic interneurons. Here we report that deletion of apoE4 in astrocytes does not protect aged mice from apoE4-induced GABAergic interneuron loss and learning and memory deficits. In contrast, deletion of apoE4 in neurons does protect aged mice from both deficits. Furthermore, deletion of apoE4 in GABAergic interneurons is sufficient to gain similar protection. This study demonstrates a detrimental effect of endogenously produced apoE4 on GABAergic interneurons that leads to learning and memory deficits in mice and provides a novel target for drug development for AD related to apoE4.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4198545PMC
http://dx.doi.org/10.1523/JNEUROSCI.2281-14.2014DOI Listing

Publication Analysis

Top Keywords

gabaergic interneurons
16
learning memory
16
memory deficits
12
deletion apoe4
12
deficits mice
8
human apoe
8
protect aged
8
aged mice
8
apoe4 gabaergic
8
apoe4
6

Similar Publications

Hippocampal reelin and GAD67 gene expression and methylation in the GFAP.HMOX1 mouse model of schizophrenia.

Biochim Biophys Acta Mol Cell Res

January 2025

Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada. Electronic address:

Schizophrenia is a complex neuropsychiatric disorder featuring enhanced brain oxidative stress and deficient reelin protein. GFAP.HMOX1 mice that overexpress heme oxygenase-1 (HO-1) in astrocytes manifest a schizophrenia-like neurochemical, neuropathological and behavioral phenotype including brain oxidative stress and reelin downregulation.

View Article and Find Full Text PDF

The mesopontine tegmental anesthesia area (MPTA) is a focal brainstem locus which, when exposed to GABAergic agents, induces brain-state transitioning from wakefulness to unconsciousness. Correspondingly, MPTA lesions render animals relatively insensitive to GABAergic anesthetics delivered systemically. Using chemogenetics, we recently identified a neuronal subpopulation within the MPTA whose excitation induces this same pro-anesthetic effect.

View Article and Find Full Text PDF

Neurocan regulates axon initial segment organization and neuronal activity.

Matrix Biol

January 2025

German Center for Neurodegenerative Diseases (DZNE), Helmholtz Association of German Research Centers, Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany; Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany. Electronic address:

The neural extracellular matrix (ECM) accumulates in the form of perineuronal nets (PNNs), particularly around fast-spiking GABAergic interneurons in the cortex and hippocampus, but also around synapses and in association with the axon initial segments (AIS) and nodes of Ranvier. Increasing evidence highlights the role of Neurocan (Ncan), a brain-specific component of ECM, in the pathophysiology of neuropsychiatric disorders like bipolar disorder and schizophrenia. Ncan localizes at PNNs, perisynaptically, and at the nodes of Ranvier and the AIS, highlighting its potential role in regulating axonal excitability.

View Article and Find Full Text PDF

Understanding GABAergic synapse diversity and its implications for GABAergic pharmacotherapy.

Trends Neurosci

January 2025

Laboratory of Cell Biology and Neuroscience, Institute of Anatomy, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany. Electronic address:

Despite the substantial contribution of disruptions in GABAergic inhibitory neurotransmission to the etiology of psychiatric, neurodevelopmental, and neurodegenerative disorders, surprisingly few drugs targeting the GABAergic system are currently available, partly due to insufficient understanding of circuit-specific GABAergic synapse biology. In addition to GABA receptors, GABAergic synapses contain an elaborate organizational protein machinery that regulates the properties of synaptic transmission. Until recently, this machinery remained largely unexplored, but key methodological advances have now led to the identification of a wealth of new GABAergic organizer proteins.

View Article and Find Full Text PDF

Blunted sensitivity to ethanol's aversive effects can increase motivation to consume ethanol; yet, the neurobiological circuits responsible for encoding these aversive properties are not fully understood. Plasticity in cells projecting from the anterior insular cortex (aIC) to the basolateral amygdala (BLA) is critical for taste aversion learning and retrieval, suggesting this circuit's potential involvement in modulating the aversive properties of ethanol. Here, we tested the hypothesis that GABAergic currents onto aIC-BLA projections would be facilitated as a consequence of retrieval of an ethanol-conditioned taste aversion (CTA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!