Alzheimer's disease is characterized by the accumulation and deposition of plaques of β-amyloid (Aβ) peptide in the brain. Given its pivotal role, new therapies targeting Aβ are in demand. We rationally designed liposomes targeting the brain and promoting the disaggregation of Aβ assemblies and evaluated their efficiency in reducing the Aβ burden in Alzheimer's disease mouse models. Liposomes were bifunctionalized with a peptide derived from the apolipoprotein-E receptor-binding domain for blood-brain barrier targeting and with phosphatidic acid for Aβ binding. Bifunctionalized liposomes display the unique ability to hinder the formation of, and disaggregate, Aβ assemblies in vitro (EM experiments). Administration of bifunctionalized liposomes to APP/presenilin 1 transgenic mice (aged 10 months) for 3 weeks (three injections per week) decreased total brain-insoluble Aβ1-42 (-33%), assessed by ELISA, and the number and total area of plaques (-34%) detected histologically. Also, brain Aβ oligomers were reduced (-70.5%), as assessed by SDS-PAGE. Plaque reduction was confirmed in APP23 transgenic mice (aged 15 months) either histologically or by PET imaging with [(11)C]Pittsburgh compound B (PIB). The reduction of brain Aβ was associated with its increase in liver (+18%) and spleen (+20%). Notably, the novel-object recognition test showed that the treatment ameliorated mouse impaired memory. Finally, liposomes reached the brain in an intact form, as determined by confocal microscopy experiments with fluorescently labeled liposomes. These data suggest that bifunctionalized liposomes destabilize brain Aβ aggregates and promote peptide removal across the blood-brain barrier and its peripheral clearance. This all-in-one multitask therapeutic device can be considered as a candidate for the treatment of Alzheimer's disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4198543 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.0284-14.2014 | DOI Listing |
Neurology
February 2025
Department of Neurology, Houston Methodist, TX, and Weill Cornell, New York, NY.
PLoS One
January 2025
Center for Innovation in Brain Science, University of Arizona Health Sciences, Tucson, Arizona, United States of America.
Translational validity of mouse models of Alzheimer's disease (AD) is variable. Because change in weight is a well-documented precursor of AD, we investigated whether diversity of human AD risk weight phenotypes was evident in a longitudinally characterized cohort of 1,196 female and male humanized APOE (hAPOE) mice, monitored up to 28 months of age which is equivalent to 81 human years. Autoregressive Hidden Markov Model (AHMM) incorporating age, sex, and APOE genotype was employed to identify emergent weight trajectories and phenotypes.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge CB2 1EW, United Kingdom.
The onset and development of Alzheimer's disease is linked to the accumulation of pathological aggregates formed from the normally monomeric amyloid-β peptide within the central nervous system. These Aβ aggregates are increasingly successfully targeted with clinical therapies at later stages of the disease, but the fundamental molecular steps in early stage disease that trigger the initial nucleation event leading to the conversion of monomeric Aβ peptide into pathological aggregates remain unknown. Here, we show that the Aβ peptide can form biomolecular condensates on lipid bilayers both in molecular assays and in living cells.
View Article and Find Full Text PDFAlzheimers Dement
January 2025
Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen, China.
Introduction: Alzheimer's disease (AD) patients with higher educational attainment (EA) often exhibit better cognitive function. However, the relationship among EA status, AD pathology, structural brain reserve, and cognitive decline requires further investigation.
Methods: We compared cognitive performance across different amyloid beta (Aβ) positron emission tomography (A ±) statuses and EA levels (High EA/Low EA).
Adv Sci (Weinh)
January 2025
Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
Dietary high salt intake is increasingly recognized as a risk factor for cognitive decline and dementia, including Alzheimer's disease (AD). Recent studies have identified a population of disease-associated astrocytes (DAA)-like astrocytes closely linked to amyloid deposition and tau pathology in an AD mouse model. However, the presence and role of these astrocytes in high-salt diet (HSD) models remain unexplored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!