Stomata are essential for diffusive entry of gases to support photosynthesis, but may also expose internal leaf tissues to pathogens. To uncover trade-offs in range-wide adaptation relating to stomata, we investigated the underlying genetics of stomatal traits and linked variability in these traits with geoclimate, ecophysiology, condensed foliar tannins and pathogen susceptibility in black cottonwood (Populus trichocarpa). Upper (adaxial) and lower (abaxial) leaf stomatal traits were measured from 454 accessions collected throughout much of the species range. We calculated broad-sense heritability (H(2) ) of stomatal traits and, using SNP data from a 34K Populus SNP array, performed a genome-wide association studies (GWAS) to uncover genes underlying stomatal trait variation. H(2) values for stomatal traits were moderate (average H(2) = 0.33). GWAS identified genes associated primarily with adaxial stomata, including polarity genes (PHABULOSA), stomatal development genes (BRASSINOSTEROID-INSENSITIVE 2) and disease/wound-response genes (GLUTAMATE-CYSTEINE LIGASE). Stomatal traits correlated with latitude, gas exchange, condensed tannins and leaf rust (Melampsora) infection. Latitudinal trends of greater adaxial stomata numbers and guard cell pore size corresponded with higher stomatal conductance (gs ) and photosynthesis (Amax ), faster shoot elongation, lower foliar tannins and greater Melampsora susceptibility. This suggests an evolutionary trade-off related to differing selection pressures across the species range. In northern environments, more adaxial stomata and larger pore sizes reflect selection for rapid carbon gain and growth. By contrast, southern genotypes have fewer adaxial stomata, smaller pore sizes and higher levels of condensed tannins, possibly linked to greater pressure from natural leaf pathogens, which are less significant in northern ecosystems.

Download full-text PDF

Source
http://dx.doi.org/10.1111/mec.12969DOI Listing

Publication Analysis

Top Keywords

stomatal traits
20
adaxial stomata
16
stomatal
9
populus trichocarpa
8
carbon gain
8
foliar tannins
8
species range
8
condensed tannins
8
pore sizes
8
stomata
6

Similar Publications

Plant Adaptation and Soil Shear Strength: Unraveling the Drought Legacy in .

Plants (Basel)

January 2025

Key Laboratory of Mountain Hazards and Earth Surface Processes, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610299, China.

Climate change has led to an increasing frequency of droughts, potentially undermining soil stability. In such a changing environment, the shallow reinforcement effect of plant roots often fails to meet expectations. This study aims to explore whether this is associated with the alteration of plant traits as a response to environmental change.

View Article and Find Full Text PDF

This study investigates the anatomical adaptations of leaves from two halophyte species, (Forsskal) Asch. and L., in response to pollutants from a cement factory and human activities.

View Article and Find Full Text PDF

Enhancing Soybean Salt Tolerance with GSNO and Silicon: A Comprehensive Physiological, Biochemical, and Genetic Study.

Int J Mol Sci

January 2025

Department of Food Security and Agricultural Development, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea.

Soil salinity is a major global challenge affecting agricultural productivity and food security. This study explores innovative strategies to improve salt tolerance in soybean (), a crucial crop in the global food supply. This study investigates the synergistic effects of S-nitroso glutathione (GSNO) and silicon on enhancing salt tolerance in soybean ().

View Article and Find Full Text PDF

Microplastics pose a serious ecological threat to agricultural soils, as they are very persistent in nature. Microplastics can enter the soil system in different ways and present different shapes and concentrations. However, little is known about how plants react to microplastics with different concentrations and shapes.

View Article and Find Full Text PDF

Examining ozone effects on the tropical C crop .

PeerJ

January 2025

College of Science & Engineering and Centre for Tropical Environmental and Sustainability Science, James Cook University of North Queensland, Cairns, Queensland, Australia.

Ozone (O), a major air pollutant, can negatively impact plant growth and yield. While O impacts have been widely documented in crops such as wheat and soybean, few studies have looked at the effects of O on sorghum, a C plant and the fifth most important cereal crop worldwide. We exposed grain sorghum ( cv.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!