Guest-responsive function of a dynamic metal-organic framework with a π Lewis acidic pore surface.

Chemistry

Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune-411008 (India), Fax: (+91) 2025908186 http://www.iiserpune.ac.in/∼sghosh/

Published: November 2014

A 3D dynamic coordination framework with an electron-deficient pore surface has been synthesized by using Zn(II) (having a variable coordination number) and a predesigned flexible π-electron-deficient core-based ligand, exhibiting chemical separations based on pore surface functionalization (π Lewis acidic pore surfaces and open metal sites) and framework flexibility, giving rise to a unique smart guest-responsive material.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201402855DOI Listing

Publication Analysis

Top Keywords

pore surface
12
lewis acidic
8
acidic pore
8
guest-responsive function
4
function dynamic
4
dynamic metal-organic
4
metal-organic framework
4
framework lewis
4
pore
4
surface dynamic
4

Similar Publications

Efficient enrichment of analytes and purification of matrices are crucial for the highly sensitive detection and monitoring of pesticides in traditional Chinese herbs. This work prepared magnetic ionic liquid-controlled covalent organic framework (IL-COF@FeO) as the sorbent via a simple in-situ precipitation polymerization and thiolene "click" strategy. The IL-COF@FeO exhibited remarkable adsorption performance towards pyrethroids within 5 min.

View Article and Find Full Text PDF

Radioactive iodine, a key waste product of nuclear energy, has been a significant concern among nuclear materials because of its high volatility and its ability to easily enter the human metabolism. Porous materials containing a large number of N-heterocyclic units such as carbazole in the skeletons use as effective adsorbents showing high iodine capture capacities. Herein, a new carbazole-bismaleimide-based hyper-cross-linked porous organic polymer (CzBMI-POP) was successfully prepared from a new tetra-armed carbazole-maleimide monomer (Bis-Cz(BMI)), which contains biscarbazole units and maleimide side groups.

View Article and Find Full Text PDF

Optimizing Nanobubble Production in Ceramic Membranes: Effects of Pore Size, Surface Hydrophobicity, and Flow Conditions on Bubble Characteristics and Oxygenation.

Langmuir

January 2025

John A. Reif, Jr. Department of Civil and Environmental Engineering, New Jersey Institute of Technology, 323 Martin Luther King Blvd., Newark, New Jersey 07102, United States.

Precise control of nanobubble size is essential for optimizing the efficiency and performance of nanobubble applications across diverse fields, such as agriculture, water treatment, and medicine. Producing fine bubbles, including nanobubbles, is commonly achieved by purging gas through porous media, such as ceramic or polymer membranes. Many operational factors and membrane properties can significantly influence nanobubble production and characteristics.

View Article and Find Full Text PDF

Heteroatom-doped hierarchical porous carbon (AF-MMTC) was prepared with hard template and salt template dual templating agents, and the effects of salt template additions on its micro-morphology, pore structure, specific surface area and electrochemical properties were investigated. The salt template not only acts as a template, but also plays the role of a pore-making agent. AF-MMTC5 has a high specific surface area of 1772 m g, a 41% microporous content and 1.

View Article and Find Full Text PDF

Biological nanopores offer a promising approach for single-molecule analysis of nucleic acids, peptides, and proteins. The work presented here introduces a biological nanopore formed by the self-assembly of complement component 9 (C9). This exceptionally large and cylindrical protein pore is composed of 20 ± 4 monomers of C9 resulting in a diameter of 10 ± 4 nm and an effective pore length of 13 nm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!