This study has shown that purified recombinant human α-synuclein (20 μM) causes membrane depolarization and loss of phosphorylation capacity of isolated purified rat brain mitochondria by activating permeability transition pore complex. In intact SHSY5Y (human neuroblastoma cell line) cells, lactacystin (5 μM), a proteasomal inhibitor, causes an accumulation of α-synuclein with concomitant mitochondrial dysfunction and cell death. The effects of lactacystin on intact SHSY5Y cells are, however, prevented by knocking down α-synuclein expression by specific siRNA. Furthermore, in wild-type (non-transfected) SHSY5Y cells, the effects of lactacystin on mitochondrial function and cell viability are also prevented by cyclosporin A (1 μM) which blocks the activity of the mitochondrial permeability transition pore. Likewise, in wild-type SHSY5Y cells, typical mitochondrial poison like antimycin A (50 nM) produces loss of cell viability comparable to that of lactacystin (5 μM). These data, in combination with those from isolated brain mitochondria, strongly suggest that intracellularly accumulated α-synuclein can interact with mitochondria in intact SHSY5Y cells causing dysfunction of the organelle which drives the cell death under our experimental conditions. The results have clear implications in the pathogenesis of sporadic Parkinson's disease. α-Synuclein is shown to cause mitochondrial impairment through interaction with permeability transition pore complex in isolated preparations. Intracellular accumulation of α-synuclein in SHSY5Y cells following proteasomal inhibition leads to mitochondrial impairment and cell death which could be prevented by knocking down α-synuclein gene. The results link mitochondrial dysfunction and α-synuclein accumulation, two key pathogenic mechanisms of Parkinson's disease, in a common damage pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jnc.12966DOI Listing

Publication Analysis

Top Keywords

shsy5y cells
20
mitochondrial dysfunction
12
parkinson's disease
12
permeability transition
12
transition pore
12
intact shsy5y
12
cell death
12
implications pathogenesis
8
α-synuclein
8
brain mitochondria
8

Similar Publications

In this manuscript, the effects of two extracts from were tested: (a) an extract titrated to 49.7% of andrographolide and obtained from leaves of the plant: (b) the pure andrographolide titrated to 99%. The extracts were dissolved in 1-butanol and tested on tumor lines (MCF7 and SH-SY5Y) and the non-tumor line (Huvec) to understand the effects on cell proliferation.

View Article and Find Full Text PDF

Artemisinin is a sesquiterpene lactone derived from the plant L., renowned for its antimalarial activity. Based on this compound, various derivatives and analogues have been obtained that exhibit diverse biological activities, including clinically approved drugs.

View Article and Find Full Text PDF

F-53B disrupts energy metabolism by inhibiting the V-ATPase-AMPK axis in neuronal cells.

J Hazard Mater

January 2025

Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, School of Medicine, Shihezi University, Shihezi, PR China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, PR China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), PR China. Electronic address:

6:2 chloro-polyfluorooctane ether sulfonate (F-53B) is considered neurotoxic, but its mechanisms remain unclear. This study aimed to investigate the toxic effects of F-53B on neuronal cells, focusing on the role of the V-ATPase-AMPK axis in the mechanism of abnormal energy metabolism. Mouse astrocytes (C8-D1A) and human neuroblastoma cells (SH-SY5Y) exposed to F-53B were used as in vitro models.

View Article and Find Full Text PDF

Objective: To evaluate the therapeutic effects of Kuanxiong Aerosol (KXA) on ischemic stroke with reperfusion and elucidate the underlying pharmacological mechanisms.

Methods: In vivo pharmacological effects on ischemic stroke with reperfusion was evaluated using the transient middle cerebral artery occlusion (t-MCAO) mice model. To evaluate short-term outcome, 30 mice were randomly divided into vehicle group (n=15) and KXA group (n=15).

View Article and Find Full Text PDF

Aureobasidium melanogenum is a black yeast-like fungus that occurs frequently both in nature and in domestic environments. It is becoming increasingly important as an opportunistic pathogen. Nevertheless, its effect on human cells has not yet been studied.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!