During development and throughout adult life, macrophages derived from hematopoietic progenitors are seeded throughout the body, initially in the absence of inflammatory and infectious stimuli as tissue-resident cells, with enhanced recruitment, activation, and local proliferation following injury and pathologic insults. We have learned a great deal about macrophage properties ex vivo and in cell culture, but their phenotypic heterogeneity within different tissue microenvironments remains poorly characterized, although it contributes significantly to maintaining local and systemic homeostasis, pathogenesis, and possible treatment. In this review, we summarize the nature, functions, and interactions of tissue macrophage populations within their microenvironment and suggest questions for further investigation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4231239 | PMC |
http://dx.doi.org/10.1111/imr.12223 | DOI Listing |
F1000Res
January 2025
Immunology, University of Toronto, Toronto, Ontario, Canada.
Fibroblasts, non-hematopoietic cells of mesenchymal origin, are tissue architects which regulate the topography of tissues, dictate tissue resident cell types, and drive fibrotic disease. Fibroblasts regulate the composition of the extracellular matrix (ECM), a 3-dimensional network of macromolecules that comprise the acellular milieu of tissues. Fibroblasts can directly and indirectly regulate immune responses by secreting ECM and ECM-bound molecules to shape tissue structure and influence organ function.
View Article and Find Full Text PDFJ Transl Med
January 2025
Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China.
Background: The progression of bladder cancer (BC) from non-muscle-invasive bladder cancer (NMIBC) to muscle-invasive bladder cancer (MIBC) significantly increases disease severity. Although the tumor microenvironment (TME) plays a pivotal role in this process, the heterogeneity of tumor cells and TME components remains underexplored.
Methods: We characterized the transcriptomes of single cells from 11 BC samples, including 4 NMIBC, 4 MIBC, and 3 adjacent normal tissues.
Discov Oncol
January 2025
Department of Thoracic Surgery, Shanghai Public Health Clinical Center, Fudan University Shanghai, Caolang Highway 2901#, Jinshan District, Shanghai, People's Republic of China.
Background: Lung adenocarcinoma (LUAD) is a leading form of non-small cell lung cancer characterized by a complex tumor microenvironment (TME) that influences disease progression and therapeutic response. Tumor-associated macrophages (TAMs) within the TME promote tumorigenesis and evasion of immune surveillance, though their heterogeneity poses challenges in understanding their roles and therapeutic targeting. Additionally, traditional Chinese medicine (TCM) offers potential anti-cancer agents that could modulate the immune landscape.
View Article and Find Full Text PDFJ Assist Reprod Genet
January 2025
Reproductive Medical Center, The Second Hospital of Jilin University, Changchun, 130000, China.
The objective of this study is to explore the impact of the use of granulocyte-macrophage colony-stimulating factor (GM-CSF) in female undergoing assisted reproductive technology (ART) on reproductive outcomes. A literature search was performed using electronic databases (PubMed, EMBASE, Web of Science, CNKI, Wanfang data, Geen Medical, and Cochrane Library). Risk ratio (RR), odds ratio (OR), and mean difference (MD) with 95% confidence intervals (CI) for various outcomes were presented.
View Article and Find Full Text PDFPediatr Res
January 2025
Department of Pediatrics, Medical College of Wisconsin, Children's Wisconsin, Milwaukee, WI, USA.
Background: The immune heterogeneity of biliary atresia (BA) presents a challenge for development of prognostic biomarkers. This study aimed to identify early immune signatures associated with biliary drainage after Kasai Portoenterostomy (KPE).
Methods: Serum samples, liver slides, and clinical data were obtained from patients enrolled in the NIDDK-supported Childhood Liver Disease Research Network.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!