During development and throughout adult life, macrophages derived from hematopoietic progenitors are seeded throughout the body, initially in the absence of inflammatory and infectious stimuli as tissue-resident cells, with enhanced recruitment, activation, and local proliferation following injury and pathologic insults. We have learned a great deal about macrophage properties ex vivo and in cell culture, but their phenotypic heterogeneity within different tissue microenvironments remains poorly characterized, although it contributes significantly to maintaining local and systemic homeostasis, pathogenesis, and possible treatment. In this review, we summarize the nature, functions, and interactions of tissue macrophage populations within their microenvironment and suggest questions for further investigation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4231239PMC
http://dx.doi.org/10.1111/imr.12223DOI Listing

Publication Analysis

Top Keywords

macrophage heterogeneity
4
heterogeneity tissues
4
tissues phenotypic
4
phenotypic diversity
4
diversity functions
4
functions development
4
development adult
4
adult life
4
life macrophages
4
macrophages derived
4

Similar Publications

Fibroblasts, non-hematopoietic cells of mesenchymal origin, are tissue architects which regulate the topography of tissues, dictate tissue resident cell types, and drive fibrotic disease. Fibroblasts regulate the composition of the extracellular matrix (ECM), a 3-dimensional network of macromolecules that comprise the acellular milieu of tissues. Fibroblasts can directly and indirectly regulate immune responses by secreting ECM and ECM-bound molecules to shape tissue structure and influence organ function.

View Article and Find Full Text PDF

Background: The progression of bladder cancer (BC) from non-muscle-invasive bladder cancer (NMIBC) to muscle-invasive bladder cancer (MIBC) significantly increases disease severity. Although the tumor microenvironment (TME) plays a pivotal role in this process, the heterogeneity of tumor cells and TME components remains underexplored.

Methods: We characterized the transcriptomes of single cells from 11 BC samples, including 4 NMIBC, 4 MIBC, and 3 adjacent normal tissues.

View Article and Find Full Text PDF

Dissecting macrophage heterogeneity and kaempferol in lung adenocarcinoma: a single-cell transcriptomic approach and network pharmacology.

Discov Oncol

January 2025

Department of Thoracic Surgery, Shanghai Public Health Clinical Center, Fudan University Shanghai, Caolang Highway 2901#, Jinshan District, Shanghai, People's Republic of China.

Background: Lung adenocarcinoma (LUAD) is a leading form of non-small cell lung cancer characterized by a complex tumor microenvironment (TME) that influences disease progression and therapeutic response. Tumor-associated macrophages (TAMs) within the TME promote tumorigenesis and evasion of immune surveillance, though their heterogeneity poses challenges in understanding their roles and therapeutic targeting. Additionally, traditional Chinese medicine (TCM) offers potential anti-cancer agents that could modulate the immune landscape.

View Article and Find Full Text PDF

The objective of this study is to explore the impact of the use of granulocyte-macrophage colony-stimulating factor (GM-CSF) in female undergoing assisted reproductive technology (ART) on reproductive outcomes. A literature search was performed using electronic databases (PubMed, EMBASE, Web of Science, CNKI, Wanfang data, Geen Medical, and Cochrane Library). Risk ratio (RR), odds ratio (OR), and mean difference (MD) with 95% confidence intervals (CI) for various outcomes were presented.

View Article and Find Full Text PDF

Background: The immune heterogeneity of biliary atresia (BA) presents a challenge for development of prognostic biomarkers. This study aimed to identify early immune signatures associated with biliary drainage after Kasai Portoenterostomy (KPE).

Methods: Serum samples, liver slides, and clinical data were obtained from patients enrolled in the NIDDK-supported Childhood Liver Disease Research Network.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!