RhoA, a small GTPase, is involved in a wide array of cellular functions in the central nervous system, such as cell motility, cytoskeleton rearrangement, transcriptional regulation, phagocytosis and cell growth. It is not known how spinal cord injury (SCI) affects the expression of RhoA in different nerve cells. In the present study, we investigated the changes of RhoA expression in remote areas of the injury at the 3rd, 7th and 30th day after SCI, which was established by T10 contusion method. Moreover, we examine its expression profile in neurons, astrocytes and microglia. RhoA was found to be weakly expressed in these nerve cells in normal spinal cord. Western blotting showed that, after SCI, the total RhoA expression was up-regulated, and the RhoA expression was increased and peaked at the 7th day. Double immunostaining revealed specific and temporal expression patterns of RhoA in different nerve cells. The expression of RhoA in neurons started to increase at day 3, peaked at day 7 and then decreased slightly at day 30. Expression of RhoA in astrocytes increased moderately after SCI and peaked at day 7. There was no obvious change in RhoA expression in microglia after SCI in remote areas. This study demonstrated that, after SCI, RhoA expression exhibited different patterns with different nerve cells of spinal cord. RhoA expression patterns also changed with time after SCI, and among different nerve cells in the injured spinal cord. These findings can help us better understand the roles of RhoA in SCI.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11596-014-1333-x | DOI Listing |
Reproduction
January 2025
X Ye, Department of Physiology and Pharmacology, University of Georgia, Athens, United States.
Wnt7a-Cre is a commonly used for generating uterine epithelial conditional knockout mice, such as epiERα-/- (Esr1f/-Wnt7aCre/+) and epiPR-/- (Pgrf/-Wnt7aCre/+). We noticed that epiERα-/- females, but not epiPR-/- females, have prolonged plugging latency, which is the duration between continuous cohabitation and detection of the first vaginal plug (a sign of mating). Mating occurs in proestrus and/or estrus stages of the estrous cycle.
View Article and Find Full Text PDFOncol Res
January 2025
Institute of Biochemical Sciences, National Taiwan University, Taipei, 10617, Taiwan.
Background: Rho GTPases are essential regulators for cellular movement and intracellular membrane trafficking. Their enzymatic activities fluctuate between active GTP-bound and inactive GDP-bound states regulated by GTPase activating proteins (GAPs) and guanine nucleotide exchange factors (GEFs). Arhgap39/Vilse/Porf-2 is a newly identified GAP.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010070, China.
N6-methyladenosine (m6A) modification is a key methylation modification involved in reproductive processes. gene editing (MT) in cattle is known to enhance muscle mass and productivity. However, the changes in m6A modification in MT bull sperm remain poorly understood.
View Article and Find Full Text PDFBiomolecules
December 2024
Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China.
RACGAP1 is a Rho-GTPase-activating protein originally discovered in male germ cells to inactivate Rac, RhoA and Cdc42 from the GTP-bound form to the GDP-bound form. GAP has traditionally been known as a tumor suppressor. However, studies increasingly suggest that overexpressed RACGAP1 activates Rac and RhoA in multiple cancers to mediate downstream oncogene overexpression by assisting in the nuclear translocation of signaling molecules and to promote cytokinesis by regulating the cytoskeleton or serving as a component of the central spindle.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Surgical Pathology, Kyoto Prefectural University of Medicine, Kyoto, Japan.
Immunologic bile duct destruction is a pathogenic condition associated with vanishing bile duct syndrome (VBDS) after liver transplantation and hematopoietic stem-cell transplantation. As the bile acid receptor sphingosine 1-phosphate receptor 2 (S1PR2) plays a critical role in recruitment of bone marrow-derived monocytes/macrophages to sites of cholestatic liver injury, S1PR2 expression was examined using cultured macrophages and patient tissues. Bile canaliculi destruction precedes intrahepatic ductopenia; therefore, we focused on hepatocyte S1PR2 and the downstream RhoA/Rho kinase 1 (ROCK1) signaling pathway and bile canaliculi alterations using three-dimensional hepatocyte culture models that form obvious bile canaliculus-like networks.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!