A range of thio- and seleno-phosphonium cationic complexes [RE(PR'3)](+)[X](-) (R = Me, Ph; E = S, Se; X = GaCl4, SbF6) have been synthesised and structurally characterised. Reaction of [PhSPPh3][GaCl4] and [PhSePPh3][GaCl4] with P(t)Bu3 results in the ready transfer of the "RS(+)" and "RSe(+)" fragments from PPh3 to the stronger electron donor P(t)Bu3. NMR experiments combined with an Eyring analysis on the corresponding degenerate phosphine exchange reaction allowed the thermodynamic values for the phosphine exchange reaction of the sulfur cation (ΔH(‡) 18.7 ± 12.0 kJ mol(-1); ΔS(‡) -99.3 ± 36.3 J mol(-1) K(-1)) to be compared with the corresponding values (ΔH(‡) 2.4 ± 1.1 kJ mol(-1) and ΔS(‡) -58.1 ± 5.0 J mol(-1) K(-1)) for the [PhSePPh3](+) system. Importantly, the large negative entropy of activation and linear dependence on the rate of exchange are compatible with an SN2-type exchange process. This conclusion is supported by DFT calculations which confirm that the phosphine exchange process occurs via an associative mechanism. The rate of exchange was found to increase from sulfur to selenium and those with aryl substituents underwent exchange faster than those with alkyl substituents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c4dt02253j | DOI Listing |
J Org Chem
December 2024
Department of Basic Education, Shanxi Agricultural University, Jinzhong, Shanxi 030801, P. R. China.
DFT calculations have been performed to gain insight into the mechanism of hydrocarbonylation of olefins and the origin of regio- and chemoselectivity. It is shown that the most feasible mechanism involves five steps: (i) decomposition of acetic formic anhydride, (ii) hydropalladation of olefins, (iii) CO migratory insertion, (iv) iodide-assisted acetate-formate exchange, and (v) formylation or carboxylation. Importantly, carboxylation proceeds via the decomposition of anhydride, followed by reductive elimination instead of direct hydrolysis of anhydride.
View Article and Find Full Text PDFChem Sci
October 2024
Department of Chemistry, University of Basel Mattenstrasse 22 4058 Basel Switzerland
The effectiveness of nanocrystals in many applications depends on their surface chemistry. Here, we leverage the atomically precise nature of zirconium and hafnium oxo clusters to gain fundamental insight into the thermodynamics of ligand binding. Through a combination of theoretical calculations and experimental spectroscopic techniques, we determine the interaction between the MO (M = Zr, Hf) cluster surface and various ligands: carboxylates, phosphonates, dialkylphosphinates, and monosubstituted phosphinates.
View Article and Find Full Text PDFChemistry
December 2024
Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, G1, Scotland, 1XL, U.K.
Hydrogen isotope exchange (HIE) via C-H activation constitutes an efficient method for the synthesis of isotopically-enriched compounds, which are crucial components of the drug discovery process and are extensively employed in mechanistic studies. A series of iridium(I) complexes, bearing a chelating phosphine-N-heterocyclic carbene ligand, was designed and synthesized for application in the catalytic HIE of challenging N- and O-aryl carbamates. A broad range of substrates were labeled efficiently, and applicability to biologically-relevant systems was demonstrated by labeling an ʟ-tyrosine-derived carbamate with excellent levels of deuterium incorporation.
View Article and Find Full Text PDFChem Commun (Camb)
September 2024
NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, P. R. China.
A Pd-catalyzed regioselective H/D exchange at the α-position of pyridines was achieved by employing secondary phosphine oxide as an internal base. The proposed five-membered structure enabled the reaction to overcome its conventional -directing feature, allowing the efficient deuteration of pyridines and quinolines at adjacent sites of N-atoms.
View Article and Find Full Text PDFJ Am Chem Soc
September 2024
Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitaetsstrasse 150, Bochum 44801, Germany.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!