Ab initio calculations are reported for the reaction of methyl boronic ester with organolithium reagents with α-leaving groups. The best calculations rely on density functional theory prediction of structures and coupled-cluster theory calculation of accurate potential energies. The results provide strong confirmation of the feasibility of a two-step mechanism with rapid initial formation of a boron-ate complex followed by slower migration of methyl from boron to carbon with loss of the leaving group. The calculated free energy of activation is consistent with observed kinetic behavior, and the calculations provide a framework for exploring substituent and other effects on reactivity. Obtaining reasonable agreement with experiment in this way is not trivial and requires careful treatment of level of theory (density functional theory calculations tend to yield inaccurate results), of conformational complexity, especially for the ate complexes, and of the nature of the microscopic model of reactants and solvent. The methodological challenges and possible pitfalls, many of which are relevant more broadly to computational modeling of organic reaction mechanisms, are discussed in detail.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jo502020eDOI Listing

Publication Analysis

Top Keywords

density functional
8
functional theory
8
homologation boronic
4
boronic esters
4
esters organolithium
4
organolithium compounds
4
compounds computational
4
computational assessment
4
assessment mechanism
4
mechanism initio
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!