Perfluorocarbon in vitreoretinal surgery and preoperative bevacizumab in diabetic tractional retinal detachment.

World J Diabetes

J Fernando Arevalo, From the Retina Division, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States.

Published: October 2014

AI Article Synopsis

  • The study aimed to describe the en bloc perfluorodissection (EBPD) technique and assess the effectiveness of using preoperative intravitreal bevacizumab during 23-gauge vitrectomy for patients with advanced proliferative diabetic retinopathy (PDR) and tractional retinal detachment (TRD).
  • A total of 114 eyes were treated, with 100% achieving retinal reattachment, and 69.2% showing significant visual improvement, although some experienced complications like cataracts and retinal breaks.
  • The findings suggest that combining intraoperative techniques with preoperative medication can be beneficial for treating advanced TRD in PDR patients.

Article Abstract

Aim: To describe the en bloc perfluorodissection (EBPD) technique and to demonstrate the applicability of using preoperative intravitreal bevacizumab during small-gauge vitreoretinal surgery (23-gauge transconjunctival sutureless vitrectomy) in eyes with advanced proliferative diabetic retinopathy (PDR) with tractional retinal detachment (TRD).

Methods: This is a prospective, interventional case series. Participants included 114 (eyes) with advanced proliferative diabetic retinopathy and TRD. EBPD was performed in 114 eyes (consecutive patients) during 23-gauge vitrectomy with the utilization of preoperative bevacizumab (1.25 mg/0.05 mL). Patients mean age was 45 years (range, 21-85 years). Surgical time had a mean of 55 min (Range, 25-85 min). Mean follow up of this group of patients was 24 mo (range, 12-32 mo). Main outcome measures included best-corrected visual acuity (BCVA), retinal reattachment, and complications.

Results: Anatomic success occurred in 100% (114/114) of eyes. Significant visual improvement [≥ 2 Early Treatment Diabetic Retinopathy Study (ETDRS) lines] was obtained in 69.2% (79/114), in 26 eyes (22.8%) BCVA remained stable, and in 8 eyes (7%) BCVA decreased (≥ 2 ETDRS lines). Final BCVA was 20/50 or better in 24% of eyes, between 20/60 and 20/400 in 46% of eyes, and worse than 20/400 in 30% of eyes. Complications included cataract in 32 (28%) eyes, iatrogenic retinal breaks in 9 (7.8%) eyes, vitreous hemorrhage requiring another procedure in 7 (6.1%) eyes, and phthisis bulbi in 1 (0.9%) eye.

Conclusion: This study demonstrates the usefulness of using preoperative intravitreal bevacizumab and EBPD during small-gauge vitreoretinal surgery in eyes with TRD in PDR.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4138596PMC
http://dx.doi.org/10.4239/wjd.v5.i5.724DOI Listing

Publication Analysis

Top Keywords

eyes
13
vitreoretinal surgery
12
diabetic retinopathy
12
preoperative bevacizumab
8
tractional retinal
8
retinal detachment
8
preoperative intravitreal
8
intravitreal bevacizumab
8
small-gauge vitreoretinal
8
eyes advanced
8

Similar Publications

This paper systematically evaluates saliency methods as explainability tools for convolutional neural networks trained to diagnose glaucoma using simplified eye fundus images that contain only disc and cup outlines. These simplified images, a methodological novelty, were used to relate features highlighted in the saliency maps to the geometrical clues that experts consider in glaucoma diagnosis. Despite their simplicity, these images retained sufficient information for accurate classification, with balanced accuracies ranging from 0.

View Article and Find Full Text PDF

The origin of color categories.

Proc Natl Acad Sci U S A

January 2025

Section on Perception, Cognition, Action, Laboratory of Sensorimotor Research, National Eye Institute, NIH, Bethesda, MD 20892.

To what extent does concept formation require language? Here, we exploit color to address this question and ask whether macaque monkeys have color concepts evident as categories. Macaques have similar cone photoreceptors and central visual circuits to humans, yet they lack language. Whether Old World monkeys such as macaques have consensus color categories is unresolved, but if they do, then language cannot be required.

View Article and Find Full Text PDF

Retinal ganglion cells (RGCs) typically respond to light stimulation over their spatially restricted receptive field. Using large-scale recordings in the mouse retina, we show that a subset of non- direction-selective (DS) RGCs exhibit asymmetric activity, selective to motion direction, in response to a stimulus crossing an area far beyond the classic receptive field. The extraclassical response arises via inputs from an asymmetric distal zone and is enhanced by desensitization mechanisms and an inherent DS component, creating a network of neurons responding to motion toward the optic disc.

View Article and Find Full Text PDF

Cognition relies on transforming sensory inputs into a generalizable understanding of the world. Mirror neurons have been proposed to underlie this process, mapping visual representations of others' actions and sensations onto neurons that mediate our own, providing a conduit for understanding. However, this theory has limitations.

View Article and Find Full Text PDF

Deep conservation complemented by novelty and innovation in the insect eye ground plan.

Proc Natl Acad Sci U S A

January 2025

Department of Cell & Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093.

A spectacular diversity of forms and features allow species to thrive in different environments, yet some structures remain relatively unchanged. Insect compound eyes are easily recognizable despite dramatic differences in visual abilities across species. It is unknown whether distant insect species use similar or different mechanisms to pattern their eyes or what types of genetic changes produce diversity of form and function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!