Obtaining informed consent for clinical tumor and germline exome sequencing of newly diagnosed childhood cancer patients.

Genome Med

Texas Children's Cancer Center, 6701 Fannin Street #1400, Houston, TX 77030 USA ; Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA ; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA ; Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA ; Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA.

Published: October 2014

Background: Effectively educating families about the risks and benefits of genomic tests such as whole exome sequencing (WES) offers numerous challenges, including the complexity of test results and potential loss of privacy. Research on best practices for obtaining informed consent (IC) in a variety of clinical settings is needed. The BASIC3 study of clinical tumor and germline WES in an ethnically diverse cohort of newly diagnosed pediatric cancer patients offers the opportunity to study the IC process in the setting of critical illness. We report on our experience for the first 100 families enrolled, including study participation rates, reasons for declining enrollment, assessment of clinical and demographic factors that might impact study enrollment, and preferences of parents for participation in optional genomics study procedures.

Methods: A specifically trained IC team offered study enrollment to parents of eligible children for procedures including clinical tumor and germline WES with results deposited in the medical record and disclosure of both diagnostic and incidental results to the family. Optional study procedures were also offered, such as receiving recessive carrier status and deposition of data into research databases. Stated reasons for declining participation were recorded. Clinical and demographic data were collected and comparisons made between enrolled and non-enrolled patients.

Results: Over 15 months, 100 of 121 (83%) eligible families elected to enroll in the study. No significant differences in enrollment were detected based on factors such as race, ethnicity, use of Spanish interpreters and Spanish consent forms, and tumor features (central nervous system versus non-central nervous system, availability of tumor for WES). The most common reason provided for declining enrollment (10% of families) was being overwhelmed by the new cancer diagnosis. Risks specific to clinical genomics, such as privacy concerns, were less commonly reported (5.5%). More than 85% of parents consented to each of the optional study procedures.

Conclusions: An IC process was developed that utilizes a specialized IC team, active communication with the oncology team, and an emphasis on scheduling flexibility. Most parents were willing to participate in a clinical germline and tumor WES study as well as optional procedures such as genomic data sharing independent of race, ethnicity or language spoken.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4195891PMC
http://dx.doi.org/10.1186/s13073-014-0069-3DOI Listing

Publication Analysis

Top Keywords

clinical tumor
12
tumor germline
12
study
10
obtaining informed
8
informed consent
8
clinical
8
exome sequencing
8
newly diagnosed
8
cancer patients
8
germline wes
8

Similar Publications

Background: For radiotherapy of head and neck cancer (HNC) magnetic resonance imaging (MRI) plays a pivotal role due to its high soft tissue contrast. Moreover, it offers the potential to acquire functional information through diffusion weighted imaging (DWI) with the potential to personalize treatment. The aim of this study was to acquire repetitive DWI during the course of online adaptive radiotherapy on an 1.

View Article and Find Full Text PDF

EZH2 inhibition induces pyroptosis via RHA-mediated S100A9 overexpression in myelodysplastic syndromes.

Exp Hematol Oncol

January 2025

Department of Hematology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.

Myelodysplastic Syndromes (MDS) represent a group of heterogeneous myeloid clonal diseases derived from aberrant hematopoietic stem/progenitor cells. Enhancer of zeste homolog 2 (EZH2) is an important regulator in gene expression through methyltransferase-dependent or methyltransferase-independent mechanisms. Herein, we found EZH2 inhibition led to MDS cell pyroptosis through RNA Helicase A (RHA) down-regulation induced overexpression of S100A9, a key regulator of inflammasome activation and pyroptosis.

View Article and Find Full Text PDF

Alpha/beta values in pediatric medulloblastoma: implications for tailored approaches in radiation oncology.

Radiat Oncol

January 2025

Department of Radiotherapy and Radiooncology, Medical Faculty, Heinrich Heine University, Moorenstr. 5, 40225, Dusseldorf, Germany.

Background: Medulloblastoma is the most common malignant pediatric brain tumor, typically treated with normofractionated craniospinal irradiation (CSI) with an additional boost over about 6 weeks in children older than 3 years. This study investigates the sensitivity of pediatric medulloblastoma cell lines to different radiation fractionation schedules. While extensively studied in adult tumors, these ratios remain unknown in pediatric cases due to the rarity of the disease.

View Article and Find Full Text PDF

Unveiling new therapeutic horizons in rheumatoid arthritis: an In-depth exploration of circular RNAs derived from plasma exosomes.

J Orthop Surg Res

January 2025

Department of Rheumatology and Immunology, Affiliated Hospital of Yangzhou University, Yangzhou University, No. 368 Hanjiang Middle Road, Yangzhou, Jiangsu, 225000, China.

Rheumatoid arthritis (RA), a chronic inflammatory joint disease causing permanent disability, involves exosomes, nanosized mammalian extracellular particles. Circular RNA (circRNA) serves as a biomarker in RA blood samples. This research screened differentially expressed circRNAs in RA patient plasma exosomes for novel diagnostic biomarkers.

View Article and Find Full Text PDF

Background: Glioblastoma is the commonest malignant brain tumor and has a very poor prognosis. Reduced expression of the MGMT gene (10q26.3), influenced primarily by the methylation of two differentially methylated regions (DMR1 and DMR2), is associated with a good response to temozolomide treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!