Context: The distribution of uropathogens and their susceptibility pattern to antibiotics vary regionally and even in the same region, they change over time. Therefore, the knowledge on the frequency of the causative microorganisms and their susceptibility to various antibiotics are necessary for a better therapeutic outcome.

Aim: The aim was to study the frequency and distribution of uropathogens and their resistance pattern to antibiotics in a tertiary care hospital.

Settings And Design: Retrospective study for a period of 1 year from January 2011 to December 2011 in a tertiary care hospital.

Materials And Methods: The culture and sensitivity data of the uropathogens from suspected cases of UTI were collected from the records of Microbiology Department for study period. Midstream urine samples were processed for microscopy and culture, and the organisms were identified by standard methods. Antibiotic susceptibility was carried out by Kirby-Bauer disk diffusion method according to Clinical and Laboratory Standards Institute guidelines. Descriptive statistics were used to analyze the data.

Results: Of 896 urine samples, 348 (38.84%) samples were positive for urine culture. Escherichia coli (52.59%) was the most common organism followed by Klebsiella. E. coli was least resistant to imipenem (8%) and amikacin (16%) and was highly resistant to co-trimoxazole (69%) and ampicillin (86%). Klebsiella species were least resistant to amikacin (26%) and were highly resistant to ampicillin (92%). The overall resistance pattern of antibiotics to uropathogens was the highest to nalidixic acid (79%) followed by co-trimoxazole (75%) and ampicillin (72%). Good susceptibility was seen with imipenem and cephalosporins.

Conclusion: E. coli is still the most common uropathogen. Nalidixic acid, ampicillin, co-trimoxazole, and first-generation fluoroquinolones have limited value for the treatment of UTI. Sensitivity to imipenem and amikacin are still retained and may be prescribed for complicated UTI. Routine monitoring of drug resistance pattern will help to identify the resistance trends regionally. This will help in the empirical treatment of UTIs to the clinicians.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4194940PMC
http://dx.doi.org/10.4103/0976-0105.141948DOI Listing

Publication Analysis

Top Keywords

resistance pattern
16
tertiary care
12
pattern antibiotics
12
distribution uropathogens
8
study period
8
urine samples
8
imipenem amikacin
8
highly resistant
8
nalidixic acid
8
will help
8

Similar Publications

Predicting phage-host interaction via hyperbolic Poincaré graph embedding and large-scale protein language technique.

iScience

January 2025

Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, the College of Life Sciences, Northwest University, Xi'an 710069, China.

Bacteriophages (phages) are increasingly viewed as a promising alternative for the treatment of antibiotic-resistant bacterial infections. However, the diversity of host ranges complicates the identification of target phages. Existing computational tools often fail to accurately identify phages across different bacterial species.

View Article and Find Full Text PDF

Background: Beta-lactams remain the first-line treatment of infections despite the increasing global prevalence of penicillin-resistant/non-susceptible strains. We conducted a cross-sectional household survey in a rural community in northern Vietnam in 2018-2019 to provide prevalence estimates of penicillin non-susceptible (PNSP) carriage and to investigate behavioural and environmental factors associated with PNSP colonization. The data presented will inform the design of a large trial of population-based interventions targeting inappropriate antibiotic use.

View Article and Find Full Text PDF

Molecular junctions (MJs) are celebrated nanoelectronic devices for mimicking conventional electronic functions, including rectifiers, sensors, wires, switches, transistors, negative differential resistance, and memory, following an understanding of charge transport mechanisms. However, capacitive nanoscale molecular junctions are rarely seen. The present work describes electrochemically (E-Chem) grown covalently attached molecular thin films of 10, 14.

View Article and Find Full Text PDF

Genes and proteins expression profile of 2D vs 3D cancer models: a comparative analysis for better tumor insights.

Cytotechnology

April 2025

University Centre for Research and Development, University Institute of Pharmaceutical Sciences, Chandigarh University, Gharuan, Mohali, 140413 India.

When juxtaposed with 2D cell culture models, multicellular tumor spheroids demonstrate a capacity to faithfully replicate certain features inherent to solid tumors. These include spatial architecture, physiological responses, the release of soluble mediators, patterns of gene expression, and mechanisms of drug resistance. The morphological and behavioural similarities between 3D-cultured cells and cells within tumor masses highlight the potential of these models in studying cancer biology and drug responses.

View Article and Find Full Text PDF

Molecular Epidemiology of Type F Among Diarrheal Patients and Virulence-Resistance Dynamics - 11 Provinces, China, 2024.

China CDC Wkly

January 2025

Department of Clinical Laboratory, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, China.

Introduction: Type F () represents a significant pathogen in human gastrointestinal diseases, primarily through its gene encoding enterotoxin (CPE). This investigation examined the prevalence, antimicrobial resistance patterns, and genetic characteristics of Type F within the Chinese population.

Methods: The study analyzed 2,068 stool samples collected from 11 provincial hospitals in 2024.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!