Δ(9)-Tetrahydrocannobinol (THC), the main psychoactive compound of Cannabis, is known to have a long terminal half-life. However, this characteristic is often ignored in pharmacokinetic (PK) studies of THC, which may affect the accuracy of predictions in different pharmacologic areas. For therapeutic use for example, it is important to accurately describe the terminal phase of THC to describe accumulation of the drug. In early clinical research, the THC challenge test can be optimized through more accurate predictions of the dosing sequence and the wash-out between occasions in a crossover setting, which is mainly determined by the terminal half-life of the compound. The purpose of this study is to better quantify the long-term pharmacokinetics of THC. A population-based PK model for THC was developed describing the profile up to 48 h after an oral, intravenous, and pulmonary dose of THC in humans. In contrast to earlier models, the current model integrates all three major administration routes and covers the long terminal phase of THC. Results show that THC has a fast initial and intermediate half-life, while the apparent terminal half-life is long (21.5 h), with a clearance of 38.8 L/h. Because the current model characterizes the long-term pharmacokinetics, it can be used to assess the accumulation of THC in a multiple-dose setting and to forecast concentration profiles of the drug under many different dosing regimens or administration routes. Additionally, this model could provide helpful insights into the THC challenge test used for the development of (novel) compounds targeting the cannabinoid system for different therapeutic applications and could improve decision making in future clinical trials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s40262-014-0195-5 | DOI Listing |
J Sep Sci
January 2025
Department of Chemistry, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, São Paulo, Ribeirão Preto-SP, Brazil.
Cannabidiol (CBD) and Δ-tetrahydrocannabinol (THC), the main components of Cannabis sativa plants, can interact with specific cell receptors known as cannabinoid receptors (CBs). The endogenous compounds anandamide (AEA) and 2-arachidonoylglycerol (2-AG) are CB agonists, and, alongside enzymes, they constitute the endocannabinoid system (ECS) and take part in neuromodulation. Several LC-MS/MS methods have been developed to quantify these compounds in biological matrixes, but a fast and simple method that can determine these analytes in plasma samples simultaneously is not available.
View Article and Find Full Text PDFSci Rep
January 2025
Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
Chronic obstructive pulmonary disease (COPD) is a common condition that complicates major surgeries like coronary artery bypass grafting (CABG). This study aims to evaluate the impact of COPD on the outcome of CABG. A registry-based retrospective cohort study included individuals who received CABG between 2009 and 2016.
View Article and Find Full Text PDFClin Neuropharmacol
January 2025
Eastern Virginia Medical School, Norfolk, VA.
Objectives: This study reviews literature on the psychiatric effects of delta-8-THC, particularly psychosis and severe mental health outcomes, to highlight the need for further research and regulation.
Background: Marijuana, the most widely used illicit drug in the United States, sees increasing use due to legalization. Although moderate use is generally safe, adverse effects can occur, especially in those with preexisting conditions.
Inorg Chem
January 2025
Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India.
The nucleotides play multiple fundamental roles that are essential in biochemical enzymatic reactions and signaling pathways. Many diseases are closely associated with their dysregulation. Therefore, reliable and sensitive optical probes to discriminate various nucleotides are essential in biochemistry, drug discovery, and disease diagnosis.
View Article and Find Full Text PDFAddiction
January 2025
Addiction and Mental Health Group, Department of Psychology, University of Bath, Bath, UK.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!