The class of [NiFe]-hydrogenases comprises oxygen-sensitive periplasmic (PH) and oxygen-tolerant membrane-bound (MBH) enzymes. For three PHs and four MBHs from six bacterial species, structural features of the nickel-iron active site of hydrogen turnover and of the iron-sulfur clusters functioning in electron transfer were determined using X-ray absorption spectroscopy (XAS). Fe-XAS indicated surplus oxidized iron and a lower number of ~2.7 Å Fe-Fe distances plus additional shorter and longer distances in the oxidized MBHs compared to the oxidized PHs. This supported a double-oxidized and modified proximal FeS cluster in all MBHs with an apparent trimer-plus-monomer arrangement of its four iron atoms, in agreement with crystal data showing a [4Fe3S] cluster instead of a [4Fe4S] cubane as in the PHs. Ni-XAS indicated coordination of the nickel by the thiol group sulfurs of four conserved cysteines and at least one iron-oxygen bond in both MBH and PH proteins. Structural differences of the oxidized inactive [NiFe] cofactor of MBHs in the Ni-B state compared to PHs in the Ni-A state included a ~0.05 Å longer Ni-O bond, a two times larger spread of the Ni-S bond lengths, and a ~0.1 Å shorter Ni-Fe distance. The modified proximal [4Fe3S] cluster, weaker binding of the Ni-Fe bridging oxygen species, and an altered localization of reduced oxygen species at the active site may each contribute to O2 tolerance.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbabio.2014.06.011DOI Listing

Publication Analysis

Top Keywords

structural differences
8
differences oxidized
8
x-ray absorption
8
absorption spectroscopy
8
active site
8
modified proximal
8
[4fe3s] cluster
8
oxygen species
8
oxidized
5
oxidized iron-sulfur
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!