A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A collagen-based multicellular tumor spheroid model for evaluation of the efficiency of nanoparticle drug delivery. | LitMetric

A collagen-based multicellular tumor spheroid model for evaluation of the efficiency of nanoparticle drug delivery.

Artif Cells Nanomed Biotechnol

a Department of Molecular & Cellular Pharmacology , Biomedical Nanotechnology Center, State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai , P.R. China.

Published: November 2016

Targeted drug delivery systems, especially those that use nanoparticles, have been the focus of research into cancer therapy during the last decade, to improve the bioavailability and delivery of anticancer drugs to specific tumor sites, thereby reducing the toxicity and side effects to normal tissues. However, the positive antitumor effects of these nanocarriers observed in conventional monolayer cultures frequently fail in vivo, due to the lack of physical and biological barriers resembling those seen in the actual body. Therefore, the collagen-based 3-D multicellular culture system, to screen new nanocarriers for drug delivery and to obtain more adequate and better prediction of therapeutic outcomes in preclinical experiments, was developed. This 3-D culture model was successfully established using optimized density of cells. Our result showed that 3-D cell colonies were successfully developed from 95-D, U87 and HCT116 cell lines respectively, after a seven-day culture in the collagen matrix. The coumarin-conjugated nanoparticles were able to penetrate the matrix gel to reach the tumor cells. The model is supposedly more accurate in reflecting/predicting the dynamics and therapeutic outcomes of candidates for drug transport in vivo, and/or investigation of tumor biology, thus speeding up the pace of discovery of novel drug delivery systems for cancer therapy.

Download full-text PDF

Source
http://dx.doi.org/10.3109/21691401.2014.968820DOI Listing

Publication Analysis

Top Keywords

drug delivery
16
delivery systems
8
cancer therapy
8
therapeutic outcomes
8
drug
5
delivery
5
collagen-based multicellular
4
tumor
4
multicellular tumor
4
tumor spheroid
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!