Commensal microbiota regulates T cell fate decision in the gut.

Semin Immunopathol

Department of Biochemistry, Graduate School of Pharmaceutical Science, Keio University, Tokyo, 105-8512, Japan.

Published: January 2015

Commensal microbiota shapes the intestinal immune system by regulating T helper (TH) cell lineage differentiation. For example, Bacteroides fragilis colonization not only optimizes the systemic TH1/TH2 balance, but also can induce regulatory T (Treg) cell differentiation in the gut. In addition, segmented filamentous bacteria (SFB) facilitate the development of TH17 cells in the small intestine. The 17 strains within clusters IV, XIVa, and XVIII of Clostridiales found in human feces can also induce the differentiation and expansion of Treg cells in the colon. Thus, the regulation of TH cell differentiation by commensal bacteria is evident; however, the molecular mechanisms underlying these processes remain uncertain. Recent studies have demonstrated that bacterial components, as well as their metabolites, play a central role in regulating TH cell development. Furthermore, these metabolites can elicit changes in histone posttranslational modification to modify the expression of critical regulators of T cell fate. In this review, we discuss the mechanisms and biological significance of microbiota-dependent TH differentiation.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00281-014-0455-3DOI Listing

Publication Analysis

Top Keywords

commensal microbiota
8
cell fate
8
cell differentiation
8
cell
6
differentiation
5
microbiota regulates
4
regulates cell
4
fate decision
4
decision gut
4
gut commensal
4

Similar Publications

Competition among bacteria for carbohydrates is pivotal for colonization resistance (CR). However, the impact of Western-style diets on CR remains unclear. Here we show how the competition between Klebsiella oxytoca and Klebsiella pneumoniae is modulated by consuming one of three Western-style diets characterized by high-starch, high-sucrose, or high-fat/high-sucrose content.

View Article and Find Full Text PDF

Clec12a controls colitis by tempering inflammation and restricting expansion of specific commensals.

Cell Host Microbe

January 2025

University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, UT 84211, USA. Electronic address:

Microbiota composition regulates colitis severity, yet the innate immune mechanisms that control commensal communities and prevent disease remain unclear. We show that the innate immune receptor, Clec12a, impacts colitis severity by regulating microbiota composition. Transplantation of microbiota from a Clec12a animal is sufficient to worsen colitis in wild-type mice.

View Article and Find Full Text PDF

Oral antibiotic treatment is well known to be one of the main factors affecting gut microbiota composition by altering bacterial diversity. It decreases the abundance of butyrate-producing bacteria such as Lachnospiraceae and Ruminococcaceae, while increasing abundance of Enterobacteriaceae. The recovery time of commensal bacteria post-antibiotic treatment varies among individuals, and often, complete recovery is not achieved.

View Article and Find Full Text PDF

Cellulolytic flagellates are essential for the symbiotic digestion of lignocellulose in the gut of lower termites. Most species are associated with host-specific consortia of bacterial symbionts from various phyla. 16S rRNA-based diversity studies and taxon-specific fluorescence in situ hybridization revealed a termite-specific clade of Actinomycetales that colonise the cytoplasm of Trichonympha spp.

View Article and Find Full Text PDF

Introduction: Cutaneous T-cell lymphoma (CTCL) is closely associated with the host microbiome. While recent evidence suggests that shifts in specific bacterial taxa are associated with response to UV-B, a form of non-ionizing radiation, the impact of ionizing radiation (IR) has not been investigated.

Methods: 16S rRNA and gene amplicon sequencing were performed on DNA extracted from swabs of lesional/non-lesional skin of 12 CTCL patients before/after TSEBT or local IR and from 25 matched healthy controls (HC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!