Background: Active vitamin D metabolites have been shown to have protective effects in experimental arthritis especially when used as preventive treatment. However, because the direct effects of 1,25-dihydroxyvitamin D3 (1,25(OH) 2D3) on bone formation and resorption are very complex, the net effect of 1,25(OH)2D3 on histomorphometric parameters of bone turnover and mineralisation should be investigated. Therefore, we examined the influence of 1,25(OH)2D3 therapy on arthritis-induced alterations of periarticular and axial bone as well as disease activity, inflammation and joint destruction in antigen-induced arthritis (AIA) of the rat.

Methods: AIA was induced in 20 eight-week-old female Wistar rats. 10 rats without arthritis were used as healthy controls. AIA rats received 1,25(OH)2D3 (0.2 μg/kg/day, i.p., n = 10) or vehicle (n = 10) at regular intervals for 28 consecutive days beginning 3 days before arthritis induction. Bone structure of the secondary spongiosa of the periarticular and axial bone was analyzed using histomorphometry. Parameters of mineralization were investigated using tetracycline labelling. Clinical disease activity, inflammation and joint destruction were measured by joint swelling and histological investigation, respectively.

Results: AIA led to significant periarticular bone loss. 1,25(OH)2D3 treatment resulted in a highly significant increase in trabecular bone volume and bone formation rate in comparison to both vehicle-treated AIA and healthy controls at periarticular (p < 0.01 and p < 0.001, respectively) and axial bone (p < 0.001 and p < 0.001, respectively). In addition, bone resorption was reduced by 1,25(OH)2D3 at the axial bone (p < 0.05 vs. vehicle-treated AIA). Joint swelling as well as histological signs of inflammation and joint destruction were not influenced by 1,25(OH)2D3.

Conclusions: The results of the study indicate a marked osteoanabolic effect of 1,25(OH)2D3 presumably due to a substantial increase in mineralization. Thus, 1,25(OH)2D3 may be an effective osteoanabolic treatment principle to antagonize the inflammation-associated suppression of bone formation in rheumatoid arthritis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4210592PMC
http://dx.doi.org/10.1186/1471-2474-15-345DOI Listing

Publication Analysis

Top Keywords

bone formation
12
bone
11
bone loss
8
secondary spongiosa
8
periarticular axial
8
axial bone
8
disease activity
8
activity inflammation
8
inflammation joint
8
joint destruction
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!