Bacterial colonization of biliary stents is one of the driving forces behind sludge formation which may result in stent occlusion. Major focus of the study was to analyze the spectrum and number of microorganisms in relation to the indwelling time of stents and the risk factors for sludge formation. 343 stents were sonicated to optimize the bacterial release from the biofilm and identified by matrix-associated laser desorption/ionization-time of flight mass spectrometer (MALDI-TOF). 2283 bacteria were analyzed in total. The most prevalent microorganisms were Enterococcus species (spp.) (504;22%), followed by Klebsiella spp. (218;10%) and Candida spp. (188;8%). Colonization of the stents mainly began with aerobic gram-positive bacteria (43/49;88%) and Candida spp. (25/49;51%), whereas stents with an indwelling time>60 days(d) showed an almost equal colonization rate by aerobic gram-negative (176/184;96%) and aerobic gram-positive bacteria (183/184;99%) and a high proportion of anaerobes (127/184;69%). Compared to stents without sludge, more Clostridium spp. [(P = 0.02; Odds Ratio (OR): 2.4; 95% confidence interval (95%CI): (1.1-4.9)]) and Staphylococcus spp. [(P = 0.03; OR (95%CI): 4.3 (1.1-16.5)] were cultured from stents with sludge. Multivariate analysis revealed a significant relationship between the number of microorganisms [P<0.01; OR (95%CI): 1.3(1.1-1.5)], the indwelling time [P<0.01; 1-15 d vs. 20-59 d: OR (95%CI): 5.6(1.4-22), 1-15 d vs. 60-3087 d: OR (95% CI): 9.5(2.5-35.7)], the presence of sideholes [P<0.01; OR (95%CI): 3.5(1.6-7.9)] and the occurrence of sludge. Stent occlusion was found in 70/343(20%) stents. In 35% of cases, stent occlusion resulted in a cholangitis or cholestasis. In conclusion, microbial colonization of the stents changed with the indwelling time. Sludge was associated with an altered spectrum and an increasing number of microorganisms, a long indwelling time and the presence of sideholes. Interestingly, stent occlusion did not necessarily lead to a symptomatic biliary obstruction.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4197023 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0110112 | PLOS |
PLoS One
January 2025
Laboratory for Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan.
Biliary stent occlusion is due, in part, to biofilm formation by bacteria. However, previous culture-based approaches may not have revealed all microorganisms on the surface. Twenty-seven patients underwent endoscopic retrograde biliary drainage for the removal or replacement of plastic biliary stents.
View Article and Find Full Text PDFEnviron Geochem Health
January 2025
Soil and Water Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, 13759, Egypt.
Fusarium solani biomass plays a significant role in water pollution remediation due to its ability to sequester heavy metals, particularly cobalt (Co(II)) and cadmium (Cd(II)), which pose severe environmental and health risks. This study aimed to identify fungi from sewage-contaminated sites and evaluate their efficiency in absorbing and reducing Co(II) and Cd(II) ions. The biosorption potential of irradiated Fusarium solani biomass for removing Co(II) and Cd(II) ions from aqueous solutions was investigated.
View Article and Find Full Text PDFEnviron Microbiol
January 2025
DTU Aqua, Section for Aquaculture, Technical University of Denmark, Hirtshals, Denmark.
The unintended microbiological production of hydrogen sulphide (HS) poses a significant challenge in engineered systems, including sewage treatment plants, landfills and aquaculture systems. Although sulphur-rich amino acids and other substrates conducive to non-sulphate-based HS production are frequently present, the capacity and potential of various microorganisms to perform sulphate-free HS production remain unclear. In this study, we identify the identity, activity and genomic characteristics of bacteria that degrade cysteine to produce HS in anaerobic enrichment bioreactors seeded with material from aquaculture systems.
View Article and Find Full Text PDFBioresour Technol
January 2025
Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China. Electronic address:
Microplastics (MPs) are prevalent in wastewater treatment systems, and their behavior is further complicated after undergoing aging processes. This study explored the impact of original and aged polyvinyl chloride (PVC) MPs on wastewater treatment performance and bacterial communities. Results revealed that Fenton-aging treatment induced surface roughening of the MPs and altered their chemical properties.
View Article and Find Full Text PDFToxics
November 2024
School of Civil Engineering, Henan Polytechnic University, Jiaozuo 454003, China.
This study investigated the purification of pollutants in runoff rainwater by constructing a micro-ecosystem using waste-activated sludge (WAS) and riverbed sludge (RBS) as inoculums in combination with pervious concrete. The research results showed that the best hydraulic retention time (HRT) was 9 h. The COD and ammonia nitrogen (NH-N) removal of the waste-activated sludge ecosystem (WASE) was 62.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!