We report the synthesis, properties, and in vitro and in vivo applications of 2'-O-methoxyethyl-4'-thioRNA (MOE-SRNA), a novel type of hybrid chemically modified RNA. In its hybridization with complementary RNA, MOE-SRNA showed a moderate improvement of Tm value (+3.4 °C relative to an RNA:RNA duplex). However, the results of a comprehensive comparison of the nuclease stability of MOE-SRNA relative to 2'-O-methoxyethylRNA (MOERNA), 2'-O-methyl-4'-thioRNA (Me-SRNA), 2'-O-methylRNA (MeRNA), 4'-thioRNA (SRNA), and natural RNA revealed that MOE-SRNA had the highest stability (t1/2 >48 h in human plasma). Because of the favorable properties of MOE-SRNA, we evaluated its in vitro and in vivo potencies as an anti-microRNA oligonucleotide against miR-21. Although the in vitro potency of MOE-SRNA was moderate, its in vivo potency was significant for the suppression of tumor growth (similar to that of MOERNA).

Download full-text PDF

Source
http://dx.doi.org/10.1002/cbic.201402398DOI Listing

Publication Analysis

Top Keywords

vitro vivo
12
properties vitro
8
vivo applications
8
applications 2'-o-methoxyethyl-4'-thiorna
8
chemically modified
8
modified rna
8
moe-srna moderate
8
moe-srna
6
chemistry properties
4
vitro
4

Similar Publications

CASP5 associated with PANoptosis promotes tumorigenesis and progression of clear cell renal cell carcinoma.

Cancer Cell Int

January 2025

Institute for Genome Engineered Animal Models of Human Diseases, National Center of Genetically Engineered Animal Models for International Research, Dalian Medical University, 9 West Section Lvshun South Road, Dalian, 116044, China.

Clear cell renal cell carcinoma (ccRCC) is a globally severe cancer with an unfavorable prognosis. PANoptosis, a form of cell death regulated by PANoptosomes, plays a role in numerous cancer types. However, the specific roles of genes associated with PANoptosis in the development and advancement of ccRCC remain unclear.

View Article and Find Full Text PDF

Background And Aim: Zinc oxide and copper oxide nanoparticles are known for their promising biological activities. This study aims to synthesize zinc oxide nanoparticles and copper-doped zinc oxide nanoparticles to harness the combined cytotoxic and anticancer effects of them in vitro and in vivo studies.

Methods: Zinc oxide nanoparticles, both doped and undoped, were synthesized using a chemical co-precipitation method.

View Article and Find Full Text PDF

Background: Mitochondrial dysfunction and neuronal damage are major sign of cytopathology in Huntington's disease (HD), a neurodegenerative disease. Ubiquitin specific peptidase 11 (USP11) is a deubiquitinating enzyme involved in various physiological processes through regulating protein degradation. However, its specific role in HD is unclear.

View Article and Find Full Text PDF

Background: Intracerebral hemorrhage (ICH) is a common subtype of stroke, characterized by a high mortality rate and a tendency to cause neurological damage. This study aims to investigate the role and mechanisms of lncRNA HCP5 in ICH.

Methods: We simulated ICH in vivo by injecting collagenase into rats and established an in vitro model using hemoglobin-treated BV2 cells.

View Article and Find Full Text PDF

Alterations in bile acid profile and pathways contribute to hepatic inflammation in cancer cachexia, a syndrome worsening the prognosis of cancer patients. As the gut microbiota impinges on host metabolism through bile acids, the current study aimed to explore the functional contribution of gut microbial dysbiosis to bile acid dysmetabolism and associated disorders in cancer cachexia. Using three mouse models of cancer cachexia (the C26, MC38 and HCT116 models), we evidenced a reduction in the hepatic levels of several secondary bile acids, mainly taurodeoxycholic (TDCA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!