In amyotrophic lateral sclerosis (ALS) the large motoneurons that innervate the fast-contracting muscle fibers (F-type motoneurons) are vulnerable and degenerate in adulthood. In contrast, the small motoneurons that innervate the slow-contracting fibers (S-type motoneurons) are resistant and do not degenerate. Intrinsic hyperexcitability of F-type motoneurons during early postnatal development has long been hypothesized to contribute to neural degeneration in the adult. Here, we performed a critical test of this hypothesis by recording from identified F- and S-type motoneurons in the superoxide dismutase-1 mutant G93A (mSOD1), a mouse model of ALS at a neonatal age when early pathophysiological changes are observed. Contrary to the standard hypothesis, excitability of F-type motoneurons was unchanged in the mutant mice. Surprisingly, the S-type motoneurons of mSDO1 mice did display intrinsic hyperexcitability (lower rheobase, hyperpolarized spiking threshold). As S-type motoneurons are resistant in ALS, we conclude that early intrinsic hyperexcitability does not contribute to motoneuron degeneration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4227046PMC
http://dx.doi.org/10.7554/eLife.04046DOI Listing

Publication Analysis

Top Keywords

intrinsic hyperexcitability
16
s-type motoneurons
16
f-type motoneurons
12
motoneurons
9
early intrinsic
8
hyperexcitability contribute
8
contribute motoneuron
8
motoneuron degeneration
8
amyotrophic lateral
8
lateral sclerosis
8

Similar Publications

Loss-of-function (LOF) mutations in KATP channels cause hyperexcitability and insulin hypersecretion, resulting in congenital hyperinsulinism (CHI). Paradoxically, despite the initial insulin hypersecretion, many CHI cases, as well as KATP knockout (KO) animals, eventually 'crossover' to undersecretion and even diabetes. Here we confirm that Sur1 KO islets exhibit higher intracellular [Ca2+] ([Ca2+]i) at all [glucose], but show decreased glucose-stimulated insulin secretion.

View Article and Find Full Text PDF

Overactivity of the sympathetic nervous system is a hallmark of aging. The cellular mechanisms behind this overactivity remain poorly understood, with most attention paid to likely central nervous system components. In this work, we hypothesized that aging also affects the function of motor neurons in the peripheral sympathetic ganglia.

View Article and Find Full Text PDF

Aβ (amyloid beta) oligomers, the major neurotoxic culprits in Alzheimer's disease, initiate early pathophysiological events, including neuronal hyperactivity, that underlie aberrant network activity and cognitive impairment. Although several synaptotoxic effects have been extensively studied, neuronal hyperexcitability, which may also contribute to cognitive deficits, is not fully understood. Here, we found several adverse effects of in vivo injection of Aβ oligomers on contextual memory and intrinsic properties of CA1 pyramidal neurons.

View Article and Find Full Text PDF

Human iPSC-derived microglia sense and dampen hyperexcitability of cortical neurons carrying the epilepsy-associated -L1342P mutation.

J Neurosci

November 2024

Borsch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907.

Article Synopsis
  • Neuronal hyperexcitability is a key feature of epilepsy, influenced by microglia, the brain's immune cells, which can affect neuronal activity.
  • Researchers developed a co-culture model using human induced pluripotent stem cell (hiPSC)-derived neurons with a genetic mutation (Nav1.2-L1342P) linked to epilepsy and observed that microglia can reduce excitability in these neurons.
  • The study found that microglia increased their branching and calcium signaling when interacting with affected neurons, ultimately lowering sodium channel activity and glutamate release, highlighting their role in managing hyperexcitability caused by epilepsy-related genetic mutations.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!