From hydrophobic to superhydrophobic and superhydrophilic siloxanes by thermal treatment.

Langmuir

Department of Management and Conservation of Ecclesiastical Cultural Heritage Objects, University Ecclesiastical Academy of Thessaloniki, Thessaloniki 54250, Greece.

Published: November 2014

The cross-influence effects of treatment temperature and time on the wettability of a siloxane elastomer is investigated in detail, through static and tilt contact angle measurements. The material is heated at 400, 500, 600, 650, 700, and 800 °C for various periods, ranging from 1 to 300 s. The siloxane surface is subjected to multiple wettability transitions with treatment time: from intrinsic hydrophobicity to superhydrophobicity (and water repellency) and then through intermediate stages (hydrophobicity and hydrophilicity) to superhydrophilicity. For the time scale used herein (1-300 s), this scenario is recorded for treatment at 650, 700, and 800 °C. For treatment at lower temperatures (400, 500, and 600 °C) only the first transition, from intrinsic hydrophobicity to superhydrophobicity, is recorded. Scanning electron microscopy, micro-Fourier transform infrared (micro-FTIR), and micro-Raman spectroscopies are employed to correlate the aforementioned wettability transitions with structural and chemical changes of the siloxane surface, developed during thermal treatment. It is shown that the first transition from intrinsic hydrophobicity to superhydrophobicity is accompanied by a severe surface-structure evolution that increases surface roughness. Once superhydrophobicity is achieved, the surface structure reaches a saturation point and it is not subjected to any other change with further thermal treatment. FTIR spectroscopy shows that the intensity of the O-H/C-H peaks increases/decreases with treatment time, and Raman measurements show that the C-Si-C vibrations gradually disappear with treatment time. The evaporation of a droplet resting on a superhydrophobic, water-repellent siloxane surface, which was produced after appropriate thermal treatment, is monitored. It is shown that droplet evaporation initially follows the constant contact area mode. At later evaporation stages, a transition to the constant contact angle mode is recorded. Finally, it is demonstrated that the superhydrophobic and water-repellent siloxane surfaces exhibit self-cleaning properties, good durability, and furthermore do not practically affect the optical transparency of glass substrates.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la503583cDOI Listing

Publication Analysis

Top Keywords

thermal treatment
16
siloxane surface
12
treatment time
12
intrinsic hydrophobicity
12
hydrophobicity superhydrophobicity
12
treatment
10
contact angle
8
400 500
8
500 600
8
650 700
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!