Fibroblast growth factor 21 (FGF-21), which is a modulator of glucose and lipid homeostasis, acts as a novel therapeutic reagent for many metabolic perturbations. However, its potential as a treatment for cardiovascular disease, especially atherosclerosis (AS) has not been fully explored. Here, we report that recombinant FGF-21 improves resistance to cell damage from oxidative stress in vitro, and from atherosclerosis in vivo. Human umbilical vein endothelial cells (HUVECs) were induced with H2O2, followed by treatment with high purity recombinant FGF-21. The results indicated that FGF-21 significantly enhanced cell viability and decreased the degree of DNA fragmentation in HUVECs, as caused by H2O2 stress induction. Further studies revealed that FGF-21 inhibited H2O2-induced cell apoptosis by preventing the activation of mitogen-activated protein kinase (MAPK) signaling pathways. In an established rat model, FGF-21 dramatically improved the condition of atherosclerotic rats by decreasing serum levels of total triglyceride (TG), low density lipoprotein cholesterol (LDL-C), and total cholesterol (TC), and by increasing the serum levels of high density lipoprotein cholesterol (HDL-C). FGF-21 also has antioxidant effects in the atherosclerotic rat, such that increased levels of superoxide dismutase, reduced glutathione, and reduced malondialdehyde were observed. These data provide novel insight into the potential use of FGF-21 in the prevention and treatment of human cardiovascular diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1139/cjpp-2014-0227 | DOI Listing |
Virol J
December 2024
Department of Hepatology, Qilu Hospital of Shandong University, Wenhuaxi Road 107#, Jinan, 250012, China.
Background: Oxidative stress plays a crucial role in the pathogenesis of HBV. This study aimed to investigate the value of fibroblast growth factor 21 (FGF21) promoter methylation in the occurrence and development of chronic hepatitis B (CHB) oxidative stress.
Methods: A total of 241 participants including 221 patients with CHB and 20 healthy controls (HCs) were recruited.
Endocr J
December 2024
Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan.
Over 70 intragenic copy-number variations (CNVs) of PHEX have been identified in patients with X-linked hypophosphatemia (XLH). However, the underlying mechanism of these CNVs has been poorly investigated. Furthermore, although PHEX undergoes X chromosome inactivation (XCI), the association between XLH in women with heterozygous PHEX variants and skewed XCI remains unknown.
View Article and Find Full Text PDFJ Hematol Oncol
December 2024
Department of Integrative Oncology, Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.
J Hepatol
December 2024
Phase I Clinical Trial Center, The First Hospital of Jilin University, Changchun, 130021, Jilin Province, China. Electronic address:
Background And Aims: Glucagon-like peptide-1 (GLP-1) and fibroblast growth factor 21 (FGF21) are key regulators of glucose and lipid metabolism. In the present study, we assessed the safety and efficacy of a novel GLP-1/FGF21 dual agonist HEC88473 for the treatment of metabolic dysfunction-associated steatotic liver disease (MASLD) combined with type 2 diabetes mellitus (T2DM).
Methods: This was a randomized, double-blind, placebo-controlled, multiple-ascending-dose phase 1b/2a trial.
J Drug Target
December 2024
Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
Treating burn lesions has always been challenging because any product should be cheap, accessible, and have anti-bacterial commodities and tissue regeneration properties. The green synthesis of magnesium oxide nanoparticles (GS-MgONPs) can create an optimal prospect that is safe with low toxicity in biological tissue and better safety for application while including the antibacterial effect. This recent study aimed to evaluate the effectiveness of burn wound treatment using GS-MgONPs in rats.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!