AI Article Synopsis

  • Mannose-binding lectin (MBL) is crucial in the immune system and variation in its gene (MBL2) affects susceptibility to infections and inflammation.
  • Common variant alleles in MBL2 can lead to differences in MBL protein levels, impacting health outcomes in populations.
  • In a study of indigenous people from various regions in Peru and Ecuador, the defective LYPB variant of MBL2 was found to be prevalent, particularly among specific communities around Lake Titicaca, suggesting that this distribution is likely a result of historical population bottlenecks rather than selective advantages.

Article Abstract

Mannose-binding lectin (MBL) is one of the five recognition molecules in the lectin complement pathway. Common variant alleles in the promoter and structural regions of the human MBL gene (MBL2) influence the stability and serum concentration of the protein. Epidemiological studies have shown that MBL2 variant alleles are associated with susceptibility to and the course of different types of infectious and inflammatory conditions. However, it has been suggested that these alleles are maintained in different populations due to selected advantages for carriers. We investigated the MBL2 allelic variation in indigenous individuals from 12 different West Central South America localities spanning from the desert coast, high altitude Andean plates and the Amazon tropical forest within the territories of Peru (n = 249) (Departments of Loreto, Ucayali, Lambayeque, Junin, Ayacucho, Huancayo and Puno), and Ecuador (n = 182) (Region of Esmeraldas and Santo Domingo de los Colorados). The distribution of MBL2 genotypes among the populations showed that the defective variant LYPB haplotype was very common. It showed the highest frequencies in Puno (Taquile (0.80), Amantani (0.80) and Anapia (0.58) islander communities of the Lake Titicaca), but lower frequencies of 0.22 in Junin (Central Andean highland) and Ucayali (Central Amazonian forest), as well as 0.27 and 0.24 in the Congoma and Cayapa/Chachis populations in the Amazonian forest in Ecuador were also observed. Our results suggest that the high prevalence of the MBL2 LYPB variant causing low levels of functional MBL in serum may mainly reflect a random distribution due to a population bottleneck in the founder populations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4196846PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0108943PLOS

Publication Analysis

Top Keywords

high prevalence
8
mannose-binding lectin
8
variant alleles
8
amazonian forest
8
mbl2
6
populations
5
extreme high
4
prevalence defective
4
defective mannose-binding
4
lectin mbl2
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!