High mobility group A1 (HMGA1) non-histone chromatin protein is known as an architectural transcription factor that regulates transcription of various genes. HMGA1 is highly expressed in almost all human cancers and considered as a potent tumor marker. Because of its association with cancers, hmga1 is considered as a critical target for anti-cancer drugs. In the present study, we report interaction of doxorubicin (DOX) with a short deoxyoligonucleotide (-1917 to -1940) within a regulatory element of hmga1 and its subsequent effect on expression of HMGA1 in breast cancer MCF7 cells. Binding of DOX to DNA was found to be strong (K(a), 5.2 × 10(5)M(-1)) and thermodynamically favorable by both negative enthalpy (ΔH, -8.1 ± 0.25 kcal M(-1)) and positive entropy changes (TΔS, 21.1 ± 5.2 kcal M(-1)) at 20 °C. A significant increase in melting temperature of DNA in presence of DOX by +10 °C was accompanied by substantial quenching of fluorescence of DOX (∼ 85%) at 595 nm and hypochromic change (∼ 40%) at 500 nm absorption spectra of DOX along with a bathochromic shift of ∼ 5 nm. Reduced expression of HMGA1 by ∼ 60% both at mRNA and protein level and associated cell death in presence of DOX was observed in breast cancer cells. Therefore, hmga1 is a promising chemotherapeutic target in treating human malignancies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jphotobiol.2014.08.026DOI Listing

Publication Analysis

Top Keywords

hmga1
9
interaction doxorubicin
8
regulatory element
8
element hmga1
8
expression hmga1
8
breast cancer
8
kcal m-1
8
presence dox
8
dox
6
doxorubicin regulatory
4

Similar Publications

Satellite DNA shapes dictate pericentromere packaging in female meiosis.

Nature

January 2025

Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

The abundance and sequence of satellite DNA at and around centromeres is evolving rapidly despite the highly conserved and essential process through which the centromere directs chromosome inheritance. The impact of such rapid evolution is unclear. Here we find that sequence-dependent DNA shape dictates packaging of pericentromeric satellites in female meiosis through a conserved DNA-shape-recognizing chromatin architectural protein, high mobility group AT-hook 1 (HMGA1).

View Article and Find Full Text PDF

Bovine herpesvirus 1 (BoHV-1) productive infection induces the generation of DNA double-strand breaks (DSBs), which may consequently lead to cell apoptosis. In response to DSBs, the DNA damage repair-related protein 53BP1 is recruited to the sites of DSBs, leading to the formation of 53BP1foci, which are crucial for the repair of damaged DNA and maintaining genomic integrity by repairing DSBs. In this study, we discovered that HMGA1 may play a significant role in counteracting virus infection-induced DNA damage, as the siRNA-mediated knockdown of HMGA1 protein expression or inhibition of HMGA1 activity by the chemical inhibitor Netropsin uniformly exacerbates the DNA damage induced by BoHV-1 productive infection.

View Article and Find Full Text PDF

In contrast to adult mammalian hearts, the adult zebrafish heart efficiently replaces cardiomyocytes lost after injury. Here we reveal shared and species-specific injury response pathways and a correlation between Hmga1, an architectural non-histone protein, and regenerative capacity, as Hmga1 is required and sufficient to induce cardiomyocyte proliferation and required for heart regeneration. In addition, Hmga1 was shown to reactivate developmentally silenced genes, likely through modulation of H3K27me3 levels, poising them for a pro-regenerative gene program.

View Article and Find Full Text PDF

Evidence increasingly indicates that HPV infection plays a pivotal role in the initiation and progression of bladder cancer (BC). Yet, determining the predictive value of HPV-associated genes in BC remains challenging. We identified differentially expressed HPV-associated genes of BC patients from the TCGA and GEO databases.

View Article and Find Full Text PDF

Sevoflurane (Sev) has a cardioprotective role in myocardial ischemia/reperfusion injury (MI/RI), but its mechanism has not been fully elucidated. This study aimed to investigate whether the circ_CDR1as/miR-671-5p/HMGA1 axis mediates the cardioprotective effect of Sev in MI/RI. Cardiomyocytes underwent hypoxia/reoxygenation (H/R) treatment was used to simulate MI/RI in vitro.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!