Although cortical actin plays an important role in cellular mechanics and morphogenesis, there is surprisingly little information on cortex organization at the apical surface of cells. In this paper, we characterize organization and dynamics of microvilli (MV) and a previously unappreciated actomyosin network at the apical surface of Madin-Darby canine kidney cells. In contrast to short and static MV in confluent cells, the apical surfaces of nonconfluent epithelial cells (ECs) form highly dynamic protrusions, which are often oriented along the plane of the membrane. These dynamic MV exhibit complex and spatially correlated reorganization, which is dependent on myosin II activity. Surprisingly, myosin II is organized into an extensive network of filaments spanning the entire apical membrane in nonconfluent ECs. Dynamic MV, myosin filaments, and their associated actin filaments form an interconnected, prestressed network. Interestingly, this network regulates lateral mobility of apical membrane probes such as integrins or epidermal growth factor receptors, suggesting that coordinated actomyosin dynamics contributes to apical cell membrane organization.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4195824 | PMC |
http://dx.doi.org/10.1083/jcb.201402037 | DOI Listing |
Sci Rep
December 2024
Department of Chemical Engineering, Kyoto University, Nishi-kyoku, Kyoto, 615-8510, Japan.
bioRxiv
December 2024
Department of Cell Biology and Center for Cell Dynamics, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, MD 21205, USA.
Microtubule acetylation is implicated in regulating cell motility, yet its physiological role in directional migration and the underlying molecular mechanisms have remained unclear. This knowledge gap has persisted primarily due to a lack of tools capable of rapidly manipulating microtubule acetylation in actively migrating cells. To overcome this limitation and elucidate the causal relationship between microtubule acetylation and cell migration, we developed a novel optogenetic actuator, optoTAT, which enables precise and rapid induction of microtubule acetylation within minutes in live cells.
View Article and Find Full Text PDFJ Clin Endocrinol Metab
December 2024
Research Centre for Medical Genetics, Moscow, Russian Federation.
Context: Pathogenic variants in the TBCE gene, encoding tubulin-specific chaperone E crucial for tubulin folding, are linked to three severe neurodevelopmental disorders: Hypoparathyroidism-retardation-dysmorphism (HRD) syndrome, Kenny-Caffey syndrome type 1, and progressive encephalopathy with amyotrophy and optic atrophy.
Objective: We identified patients with a novel, milder TBCE-associated phenotype and aimed to characterize it at the clinical and molecular levels.
Materials And Methods: We conducted splicing analysis using deep NGS sequencing of RT-PCR products and detected TBCE through Western blotting.
iScience
December 2024
Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden.
Fibroblasts are adherent cells that maintain tissue homeostasis by sensing and responding to the extracellular matrix (ECM). Focal adhesions (FAs) link these ECM changes to actomyosin dynamics through changes in its composition, influencing cellular response. Septin-7 (Sept-7) has previously been found in FA proteomics studies and shown to influence ECM sensing.
View Article and Find Full Text PDFbioRxiv
November 2024
Department of Molecular, Cellular, and Developmental Biology; University of Michigan; Ann Arbor, Michigan, 48109; USA.
To preserve barrier function, cell-cell junctions must dynamically remodel during cell shape changes. We have previously described a rapid tight junction repair pathway characterized by local, transient activation of RhoA, termed 'Rho flares,' which repair leaks in tight junctions via promoting local actomyosin-mediated junction remodeling. In this pathway, junction elongation is a mechanical trigger that initiates RhoA activation through an influx of intracellular calcium and recruitment of p115RhoGEF.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!