The loss of conformational entropy is a major contribution in the thermodynamics of protein folding. However, accurate determination of the quantity has proven challenging. We calculate this loss using molecular dynamic simulations of both the native protein and a realistic denatured state ensemble. For ubiquitin, the total change in entropy is TΔSTotal = 1.4 kcal⋅mol(-1) per residue at 300 K with only 20% from the loss of side-chain entropy. Our analysis exhibits mixed agreement with prior studies because of the use of more accurate ensembles and contributions from correlated motions. Buried side chains lose only a factor of 1.4 in the number of conformations available per rotamer upon folding (ΩU/ΩN). The entropy loss for helical and sheet residues differs due to the smaller motions of helical residues (TΔShelix-sheet = 0.5 kcal⋅mol(-1)), a property not fully reflected in the amide N-H and carbonyl C=O bond NMR order parameters. The results have implications for the thermodynamics of folding and binding, including estimates of solvent ordering and microscopic entropies obtained from NMR.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4217416 | PMC |
http://dx.doi.org/10.1073/pnas.1407768111 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
National Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing 100094, China.
TMEM16A, a key calcium-activated chloride channel, is crucial for many physiological and pathological processes such as cancer, hypertension, and osteoporosis, etc. However, the regulatory mechanism of TMEM16A is poorly understood, limiting the discovery of effective modulators. Here, we unveil an allosteric gating mechanism by presenting a high-resolution cryo-EM structure of TMEM16A in complex with a channel inhibitor that we identified, Tamsulosin, which is resolved at 2.
View Article and Find Full Text PDFJ Biomol Struct Dyn
February 2025
Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, India.
The P53 protein, a cancer-associated transcriptional factor and tumor suppressor, houses a Zn ion in its DNA-binding domain (DBD), essential for sequence-specific DNA binding. However, common mutations at position 273, specifically from Arginine to Histidine and Cysteine, lead to a loss of function as a tumor suppressor, also called DNA contact mutations. The mutant (MT) P53 structure cannot stabilize DNA due to inadequate interaction.
View Article and Find Full Text PDFJ Chem Inf Model
December 2024
Dipartimento di Bioscienze, Università degli Studi di Milano, Milan 20133, Italy.
The computational study of ligand binding to a target protein provides mechanistic insight into the molecular determinants of this process and can improve the success rate of drug design. All-atom molecular dynamics (MD) simulations can be used to evaluate the binding free energy, typically by thermodynamic integration, and to probe binding mechanisms, including the description of protein conformational dynamics. The advantages of MD come at a high computational cost, which limits its use.
View Article and Find Full Text PDFPhytomedicine
December 2024
Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China. Electronic address:
Object: Rheumatoid arthritis (RA) is a prevalent and currently incurable autoimmune disease. Existing conventional medical treatments are limited in their efficacy, prolonged disease may lead to bone destruction, joint deformity, and loss of related functions, which places a huge burden on RA patients and their families. For millennia, the use of traditional Chinese medicine (TCM), exemplified by the Gui-Zhi-Shao-Yao-Zhi-Mu decoction (GZSYZM), has been demonstrated to offer distinct therapeutic advantages in the management of RA.
View Article and Find Full Text PDFFood Chem
December 2024
SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China. Electronic address:
The present study was performed to investigate the digestive profiles of snakeheads' belly muscles (BM), tail muscles (TM) dorsal muscles (DM), and eye muscles (EM), with further explorations of relevant factors. Kinetic models were adopted to describe the digestion process with crucial parameters. BM showed the highest digestibility and digestive rate, followed by DM, TM, and EM.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!