Triclosan (TCS) is a commonly used antimicrobial agent in personal care and sanitizing products, as well as in household items. Numerous studies have demonstrated the presence of TCS in various human tissues. Several studies have reported the accumulation of TCS in fish and human brain tissue. The aim of the present study was to investigate the effect of TCS on apoptosis in mouse neocortical neurons after 7 days of culture in vitro following 3, 6 and 24 h of exposure. To explore the mechanism underlying the effects of TCS in neurons, we studied the activation and protein expression of the Fas receptor (FasR) and caspase-8, caspase-9 and caspase-3, as well as DNA fragmentation in TCS-treated cells. Cultures of neocortical neurons were prepared from Swiss mouse embryos on day 15/16 of gestation. The cells were cultured in phenol red-free Neurobasal medium with B27 and glutamine. The cultures were treated with concentrations of TCS ranging from 1 nM to 100 μM for 3, 6 and 24 h. The level of lactate dehydrogenase (LDH) was measured in the culture medium to exclude the cytotoxic concentrations. The cytotoxic effects were only observed when the highest concentrations of TCS were used (50 and 100 μM). To study apoptosis, the activities of caspase-8, caspase-9 and caspase-3 were measured, and DNA fragmentation was evaluated. Our results are the first time to demonstrate that TCS can induce an apoptotic process in neocortical neurons in vitro. The data demonstrated that TCS caused caspase-3 activation, DNA fragmentation and apoptotic body formation. Non-cytotoxic concentrations of TCS activated the extrinsic apoptotic signaling pathway, which is dependent on FasR and caspase-8 activation. However, it is also possible that TCS may activate the intrinsic apoptotic pathway after long-term exposure. Therefore, further studies on the mechanism underlying the effects of TCS on the nervous system are needed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuroscience.2014.10.001 | DOI Listing |
Neuron
January 2025
Neuroscience Institute, Langone Medical Center, New York University, New York, NY, USA; Department of Physiology and Neuroscience, Langone Medical Center, New York University, New York, NY, USA; Department of Neurology, Langone Medical Center, New York University, New York, NY, USA. Electronic address:
Systems consolidation relies on coordination between hippocampal sharp-wave ripples (SWRs) and neocortical UP/DOWN states during sleep. However, whether this coupling exists across the neocortex and the mechanisms enabling it remains unknown. By combining electrophysiology in mouse hippocampus (HPC) and retrosplenial cortex (RSC) with wide-field imaging of the dorsal neocortex, we found spatially and temporally precise bi-directional hippocampo-neocortical interaction.
View Article and Find Full Text PDFJ Neurosci
January 2025
Department of Integrative Anatomy, Nagoya City University Graduate School of Medicinal Sciences.
Neurons in the cerebral cortex and hippocampus discharge synchronously in brain state-dependent manner to transfer information. Published studies have highlighted the temporal coordination of neuronal activities between the hippocampus and a neocortical area, however, how the spatial extent of neocortical activity relates to hippocampal activity remains partially unknown. We imaged mesoscopic neocortical activity while recording hippocampal local field potentials in anesthetized and unanesthetized GCaMP-expressing transgenic mice.
View Article and Find Full Text PDFiScience
January 2025
Institute of Neuroscience and Medicine 10, Research Centre Jülich, 52425 Jülich, Germany.
The / gene, linked to fine motor control in vertebrates, is a potential candidate gene thought to play a prominent role in human language production. It is expressed specifically in a subset of corticothalamic (CT) pyramidal cells (PCs) in layer 6 (L6) of the neocortex. These L6 FOXP2+ PCs project exclusively to the thalamus, with L6a PCs targeting first-order or both first- and higher-order thalamic nuclei, whereas L6b PCs connect only to higher-order nuclei.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Ernst Strüngmann Institute, Frankfurt am Main 60528, Germany.
The dynamics of neuronal systems are characterized by hallmark features such as oscillations and synchrony. However, it has remained unclear whether these characteristics are epiphenomena or are exploited for computation. Due to the challenge of selectively interfering with oscillatory network dynamics in neuronal systems, we simulated recurrent networks of damped harmonic oscillators in which oscillatory activity is enforced in each node, a choice well supported by experimental findings.
View Article and Find Full Text PDFSci Transl Med
January 2025
Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377 Munich, Germany.
In Alzheimer's disease (AD), amyloid-β (Aβ) triggers the aggregation and spreading of tau pathology, which drives neurodegeneration and cognitive decline. However, the pathophysiological link between Aβ and tau remains unclear, which hinders therapeutic efforts to attenuate Aβ-related tau accumulation. Aβ has been found to trigger neuronal hyperactivity and hyperconnectivity, and preclinical research has shown that tau spreads across connected neurons in an activity-dependent manner.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!