Background: Virtual surgery may improve learning and provides an opportunity for pre-operative surgical rehearsal. We describe a novel haptic temporal bone simulator specifically developed for multicore processing and improved visual realism. A position locking algorithm for enhanced drill-bone interaction and haptic fidelity is further employed. The simulation construct is evaluated against cadaveric education.

Methods: A voxel-based simulator was designed for multicore architecture employing Marching Cubes and Laplacian smoothing to perform real-time haptic and graphic rendering of virtual bone.

Results: Residents were equivocal about the physical properties of the VM, as cortical (3.2 ± 2.0) and trabecular (2.8 ± 1.6) bone drilling character was appraised as dissimilar to CTB. Overall similarity to cadaveric training was moderate (3.5 ± 1.8). Residents generally felt the VM was beneficial in skill development, rating it highest for translabyrinthine skull-base approaches (5.2 ± 1.3). The VM was considered an effective (5.4 ± 1.5) and accurate (5.7 ± 1.4) training tool which should be integrated into resident education (5.5 ± 1.4). The VM was thought to improve performance (5.3 ± 1.8) and confidence (5.3 ± 1.9) and was highly rated for anatomic learning (6.1 ± 1.9).

Conclusion: Study participants found the VM to be a beneficial and effective platform for learning temporal bone anatomy and surgical techniques. They identify some concern with limited physical realism likely owing to the haptic device interface. This study is the first to compare isomorphic simulation in education. This significantly removes possible confounding features as the haptic simulation was based on derivative imaging.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4198678PMC
http://dx.doi.org/10.1186/s40463-014-0031-9DOI Listing

Publication Analysis

Top Keywords

temporal bone
12
haptic simulation
8
haptic
6
comparison cadaveric
4
cadaveric isomorphic
4
isomorphic virtual
4
virtual haptic
4
simulation
4
simulation temporal
4
bone
4

Similar Publications

Acute myeloid leukemia (AML) is a genetically heterogeneous disease with high rates of relapse after initial treatment. Identifying measurable residual disease (MRD) following initial therapy is essential to assess response, predict patient outcomes, and identify those in need of additional intervention. Currently, MRD analysis relies on invasive, serial bone marrow (BM) biopsies, which complicate sample availability and processing time and negatively impact patient experience.

View Article and Find Full Text PDF

Objective: two new cases of temporal bone squamous cell carcinoma (TBSCC) with a bilateral occurrence are presented. Furthermore, a review of the literature was performed and the yearly incidence was calculated.

Methods: A systematic review of the literature was conducted using PRISMA guidelines.

View Article and Find Full Text PDF

Background: This study aims to delineate the global, regional, and national burden of malignant neoplasms of bone and articular cartilage (MNBAC) among individuals aged 65 years and older from 1990 to 2021, stratified by age, sex, and sociodemographic index (SDI).

Methods: We harnessed data from the Global Burden of Disease Study 2021 to evaluate the prevalence, incidence, mortality, and disability-adjusted life years (DALYs) associated with MNBAC among individuals aged 65 years and older across 204 countries and territories between 1990 and 2021. The socio-demographic Index (SDI) served as a metric to examine the influence of socioeconomic development on the burden of MNBAC.

View Article and Find Full Text PDF

Background And Purpose: Inter-hypothalamic adhesions (IHAs) are parenchymal tissue bridges traversing the third ventricle, previously reported only in the pediatric population. We aim to understand the prevalence of IHA in the adult population, assess their size and location, and ultimately investigate whether IHA volumes correlate with age.

Materials And Methods: Patients who underwent routine high-resolution 3D T2WI MRI studies of the temporal bone/internal auditory canal at an otolaryngology clinic between 2008 and 2014 were consecutively selected.

View Article and Find Full Text PDF

Application of Artificial Intelligence in Otology: Past, Present, and Future.

J Clin Med

December 2024

Department of Otolaryngology and Head and Neck Surgery, Faculty of Medicine, University of Tokyo, Tokyo 113-8655, Japan.

Artificial Intelligence (AI) is a concept whose goal is to imitate human intellectual activity in computers. It emerged in the 1950s and has gone through three booms. We are in the third boom, and it will continue.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!