There are a paucity of data concerning gene products that could contribute to the ability of Moraxella catarrhalis to colonize the human nasopharynx. Inactivation of a gene (mesR) encoding a predicted response regulator of a two-component signal transduction system in M. catarrhalis yielded a mutant unable to grow in liquid media. This mesR mutant also exhibited increased sensitivity to certain stressors, including polymyxin B, SDS, and hydrogen peroxide. Inactivation of the gene (mesS) encoding the predicted cognate sensor (histidine) kinase yielded a mutant with the same inability to grow in liquid media as the mesR mutant. DNA microarray and real-time reverse transcriptase PCR analyses indicated that several genes previously shown to be involved in the ability of M. catarrhalis to persist in the chinchilla nasopharynx were upregulated in the mesR mutant. Two other open reading frames upregulated in the mesR mutant were shown to encode small proteins (LipA and LipB) that had amino acid sequence homology to bacterial adhesins and structural homology to bacterial lysozyme inhibitors. Inactivation of both lipA and lipB did not affect the ability of M. catarrhalis O35E to attach to a human bronchial epithelial cell line in vitro. Purified recombinant LipA and LipB fusion proteins were each shown to inhibit human lysozyme activity in vitro and in saliva. A lipA lipB deletion mutant was more sensitive than the wild-type parent strain to killing by human lysozyme in the presence of human apolactoferrin. This is the first report of the production of lysozyme inhibitors by M. catarrhalis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4288865PMC
http://dx.doi.org/10.1128/IAI.02486-14DOI Listing

Publication Analysis

Top Keywords

mesr mutant
16
lipa lipb
16
liquid media
12
lysozyme inhibitors
12
moraxella catarrhalis
8
two-component signal
8
signal transduction
8
transduction system
8
production lysozyme
8
inactivation gene
8

Similar Publications

There are a paucity of data concerning gene products that could contribute to the ability of Moraxella catarrhalis to colonize the human nasopharynx. Inactivation of a gene (mesR) encoding a predicted response regulator of a two-component signal transduction system in M. catarrhalis yielded a mutant unable to grow in liquid media.

View Article and Find Full Text PDF

[Homozygote mice deficient in serotonin 5-HT1B receptor and antidepressant effect of selective serotonin reuptake inhibitors].

C R Seances Soc Biol Fil

May 1999

Laboratoire de Neuropharmacologie EAD MESR 98-213, Faculté de Pharmacie, Université Paris-Sud, Châtenay-Malabry, France.

We use the knockout mice strategy to investigate the contribution of the 5-HT1B receptor in mediating the effects of selective serotonin reuptake inhibitors (SSRI). Using microdialysis in awake 129/Sv mice, we show that the absence of the 5-HT1B receptor in mutant mice (KO 1B -/-) potentiated the effect of paroxetine on extracellular 5-HT levels in the ventral hippocampus, but not in the frontal cortex compared to wild-type mice (WT). Furthermore, using the forced swimming test, we demonstrate that SSRIs decreased immobility of WT mice, and this effect is absent in KO 1B -/- mice showing therefore that activation of 5-HT1B receptors mediate the antidepressant-like effects of SSRIs.

View Article and Find Full Text PDF

Glu-50 of aspartate transcarbamoylase from Escherichia coli forms a set of interdomain bridging interactions between the 2 domains of the catalytic chain; these interactions are critical for stabilization of the high-activity high-affinity form of the enzyme. The mutant enzyme with an alanine substituted for Glu-50 (Glu-50-->Ala) exhibits significantly reduced activity, little cooperativity, and altered regulatory behavior (Newton CJ, Kantrowitz ER, 1990, Biochemistry 29:1444-1451). A study of the structural consequences of replacing Glu-50 by alanine using solution X-ray scattering is reported here.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!