This paper introduces an image denoising procedure based on a 2D scale-mixing complex-valued wavelet transform. Both the minimal (unitary) and redundant (maximum overlap) versions of the transform are used. The covariance structure of white noise in wavelet domain is established. Estimation is performed via empirical Bayesian techniques, including versions that preserve the phase of the complex-valued wavelet coefficients and those that do not. The new procedure exhibits excellent quantitative and visual performance, which is demonstrated by simulation on standard test images.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TIP.2014.2362058DOI Listing

Publication Analysis

Top Keywords

image denoising
8
complex-valued wavelet
8
denoising scale-mixing
4
scale-mixing complex
4
wavelet
4
complex wavelet
4
wavelet transforms
4
transforms paper
4
paper introduces
4
introduces image
4

Similar Publications

Optimizing dual energy X-ray image enhancement using a novel hybrid fusion method.

J Xray Sci Technol

December 2024

School of Electrical and Information Engineering, Tianjin University, Nankai District, Tianjin, China.

Background: Airport security is still a main concern for assuring passenger safety and stopping illegal activity. Dual-energy X-ray Imaging (DEXI) is one of the most important technologies for detecting hidden items in passenger luggage. However, noise in DEXI images, arising from various sources such as electronic interference and fluctuations in X-ray intensity, can compromise the effectiveness of object identification.

View Article and Find Full Text PDF

Network intrusion detection (NID) is an effective manner to guarantee the security of cyberspace. However, the scale of normal network traffic is much larger than intrusion traffic (i.e.

View Article and Find Full Text PDF

The rapid development of spatial transcriptomics (ST) technology has provided unprecedented opportunities to understand tissue relationships and functions within specific spatial contexts. Accurate identification of spatial domains is crucial for downstream spatial transcriptomics analysis. However, effectively combining gene expression data, histological images and spatial coordinate data to identify spatial domains remains a challenge.

View Article and Find Full Text PDF

Background: Measurement noise often leads to inaccurate shear wave phase velocity estimation in ultrasound shear wave elastography. Filtering techniques are commonly used for denoising the shear wavefields. However, these filters are often not sufficient, especially in fatty tissues where the signal-to-noise ratio (SNR) can be very low.

View Article and Find Full Text PDF

CryoSamba: Self-supervised deep volumetric denoising for cryo-electron tomography data.

J Struct Biol

December 2024

Program in Cellular and Molecular Medicine, Boston Children's Hospital, 200 Longwood Ave, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, 200 Longwood Ave, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, 200 Longwood Ave, Boston, MA 02115, USA. Electronic address:

Cryogenic electron tomography (cryo-ET) has rapidly advanced as a high-resolution imaging tool for visualizing subcellular structures in 3D with molecular detail. Direct image inspection remains challenging due to inherent low signal-to-noise ratios (SNR). We introduce CryoSamba, a self-supervised deep learning-based model designed for denoising cryo-ET images.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!