The ability of a human artery to pass through 150 million liters of blood sustaining 2 billion pulsations of blood pressure with minor deterioration depends on unique construction of the arterial wall. Viscoelastic properties of this construction enable to re-seal the occuring damages apparently without direct immediate participance of the constituent cells. Collagen structures are considered to be the elements that determine the mechanoelastic properties of the wall in parallel with elastin responsible for elasticity and resilience. Collagen scaffold architecture is the function-dependent dynamic arrangement of a dozen different collagen types composing three distinct interacting forms inside the extracellular matrix of the wall. Tightly packed molecules of collagen types I, III, V provide high tensile strength along collagen fibrils but toughness of the collagen scaffold as a whole depends on molecular bonds between distinct fibrils. Apart of other macromolecules in the extracellular matrix (ECM), collagen-specific interlinks involve microfilaments of collagen type VI, meshwork-organized collagen type VIII, and FACIT collagen type XIV. Basement membrane collagen types IV, XV, XVIII and cell-associated collagen XIII enable transmission of mechanical signals between cells and whole artery matrix. Collagen scaffold undergoes continuous remodeling by decomposition promoted with MMPs and reconstitution from newly produced collagen molecules. Pulsatile stress-strain load modulates both collagen synthesis and MMP-dependent collagen degradation. In this way the ECM structure becomes adoptive to mechanical challenges. The mechanoelastic properties of the arterial wall are changed in atherosclerosis concomitantly with collagen turnover both type-specific and dependent on the structure. Improving the feedback could be another approach to restore sufficient blood circulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/1381612820666141013122906 | DOI Listing |
J Anat
January 2025
Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital - Bispebjerg-Frederiksberg, Copenhagen, Denmark.
Tendon injuries and disorders associated with mechanical tendon overuse are common musculoskeletal problems. Even though tendons play a central role in human movement, the intrinsic healing process of tendon is very slow. So far, it is known that tendon cell activity is supported by several interstitial cells within the tendon.
View Article and Find Full Text PDFJ Cell Mol Med
January 2025
Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, China.
The clinical application of doxorubicin (DOX) is limited due to its cardiotoxicity, which is primarily attributed to its interaction with iron in mitochondria, leading to lipid peroxidation and myocardial ferroptosis. This study aimed to investigate the role of the gut microbiota-derived metabolite, indole-3-lactic acid (ILA), in mitigating DOX-induced cardiotoxicity (DIC). Cardiac function, pathological changes, and myocardial ferroptosis were assessed in vivo.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
February 2025
McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania, USA.
Cardiovascular diseases (CVDs) were responsible for approximately 19 million deaths in 2020, marking an increase of 18.7% since 2010. Biological decellularized patches are common therapeutic solutions for CVD such as cardiac and valve defects.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, 266071, China.
Corneal substitutes with structural and compositional characteristics resembling those of natural corneas have attracted considerable attention. However, biomimicking the complex hierarchical organization of corneal stroma is challenging. In this study, humanized corneal stroma-like adhesive patches (HCSPs) are prepared through a multi-step process.
View Article and Find Full Text PDFJ Dermatol
January 2025
Department of Dermatology and Allergology, EB House Austria, Research Program for Molecular Therapy of Genodermatoses, University Hospital of the Paracelsus Medical University Salzburg, Salzburg, Austria.
Recessive dystrophic epidermolysis bullosa (RDEB) is caused by mutations in COL7A1, leading to loss or dysfunction of type-VII collagen (C7), a protein essential for skin stability. Clinically, patients suffer from severe skin blistering, chronic or recurrent wounds, and scarring, which predispose to early onset of aggressive squamous cell carcinoma. Previous studies showed that RDEB-keratinocytes (RDEB-KC) express high levels of matrix-metalloproteinase 9 (MMP-9), a molecule known to play a crucial role in wound chronification if dysregulated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!