An endoplasmic reticulum stress-initiated sphingolipid metabolite, ceramide-1-phosphate, regulates epithelial innate immunity by stimulating β-defensin production.

Mol Cell Biol

Department of Dermatology, School of Medicine, University of California, San Francisco, San Francisco, California, USA Department of Veterans Affairs Medical Center, San Francisco, California, USA Northern California Institute for Research and Education, San Francisco, California, USA

Published: December 2014

Antimicrobial peptides (AMP) are ubiquitous innate immune elements in epithelial tissues. We recently discovered that a signaling lipid, the ceramide metabolite sphingosine-1-phosphate (S1P), regulates production of a major AMP, cathelicidin antimicrobial peptide (CAMP), in response to a subtoxic level of endoplasmic reticulum (ER) stress that can be induced by external perturbants in keratinocytes. We hypothesized that an ER stress-initiated signal could also regulate production of another major class of AMPs: i.e., the human beta-defensins 2 (hBD2) and 3 (hBD3). Keratinocytes stimulated with a pharmacological ER stressor, thapsigargin (Tg), increased hBD2/hBD3 as well as CAMP mRNA expression. While inhibition of sphingosine-1-phosphate production did not alter hBD expression following ER stress, blockade of ceramide-1-phosphate (C1P) suppressed Tg-induced hBD2/hBD3 but not CAMP expression. Exogenous C1P also increased hBD2/hBD3 production, indicating that C1P stimulates hBD expression. We showed further that C1P-induced hBD2/hBD3 expression is regulated by a novel pathway in which C1P stimulates downstream hBD via a cPLA2a→15d-PGJ2→PPARα/PPARβ/δ→Src kinase→STAT1/STAT3 transcriptional mechanism. Finally, conditioned medium from C1P-stimulated keratinocytes showed antimicrobial activity against Staphylococcus aureus. In summary, our present and recent studies discovered two new regulatory mechanisms of key epidermal AMP, hBD2/hBD3 and CAMP. The C1P and S1P pathways both signal to enhance innate immunity in response to ER stress.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4248733PMC
http://dx.doi.org/10.1128/MCB.00599-14DOI Listing

Publication Analysis

Top Keywords

endoplasmic reticulum
8
innate immunity
8
production major
8
increased hbd2/hbd3
8
hbd expression
8
hbd2/hbd3 camp
8
c1p stimulates
8
production
5
hbd2/hbd3
5
expression
5

Similar Publications

Comprehensive analysis of the succinylome in Vero cells infected with peste des petits ruminants virus Nigeria 75/1 vaccine strain.

BMC Vet Res

January 2025

State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Yanchangpu, Chengguan District, Lanzhou, 730046, Gansu, China.

Background: Peste des petits ruminants virus (PPRV) is currently the only member of the Morbillivirus caprinae species within the genus Morbillivirus of the family Paramyoxviridae. PPRV causes a highly contagious disease in small ruminants, especially goats and sheep. Succinylation is a newly identified and conserved modification and plays an important role in host cell response to pathogen infection.

View Article and Find Full Text PDF

The prevalence of Alzheimer's disease (AD) is increasing as society ages. The details of AD pathogenesis have not been fully elucidated, and a comprehensive gene expression analysis of the process leading up to the onset of AD would be helpful for understanding the mechanism. We performed an RNA sequencing analysis on a cohort of 1227 Japanese blood samples, representing 424 AD patients, 543 individuals with mild cognitive impairment (MCI), and 260 cognitively normal (CN) individuals.

View Article and Find Full Text PDF

The human () gene encodes a plasma membrane protein SLC39A8 (ZIP8) that mediates the specific uptake of the metals Cd, Mn, Zn, Fe, Co, and Se Pathogenic variants within are associated with congenital disorder of glycosylation type 2 (CDG type II) or Leigh-like syndrome. However, numerous mutations of uncertain significance are also linked to different conditions or benign traits. Our study characterized 21 variants and measured their impact on protein localization and intracellular levels of Cd, Zn, and Mn We identified four variants that disrupt protein expression, five variants with high retention in the endoplasmic reticulum, and 12 variants with localization to the plasma membrane.

View Article and Find Full Text PDF

Tomato B-cell lymphoma2 (Bcl2)-associated athanogene 5 (SlBAG5) contributes negatively to immunity against necrotrophic fungus Botrytis cinerea through interacting with SlBAP1 and modulating catalase activity.

Int J Biol Macromol

January 2025

Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, PR China; Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, PR China. Electronic address:

The evolutionarily conserved and multifunctional B-cell lymphoma2 (Bcl2)-associated athanogene proteins (BAGs), serving as co-chaperone regulators, play a pivotal role in orchestrating plant stress responses. In this study, the possible involvement of tomato SlBAG genes in resistance to Botrytis cinerea was examined. The SlBAG genes respond with different expression change patterns to B.

View Article and Find Full Text PDF

SERCA2 dysfunction accelerates angiotensin II-induced aortic aneurysm and atherosclerosis by induction of oxidative stress in aortic smooth muscle cells.

J Mol Cell Cardiol

January 2025

School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China; State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Harbin Medical University, China; Chongqing Key Laboratory of New Drug Delivery System, Chongqing 400038, China. Electronic address:

Background And Aim: Our previous research indicates that sarcoplasmic/endoplasmic reticulum calcium ATPase 2 (SERCA2) dysfunction facilitates the phenotypic transformation of aortic smooth muscle cells (ASMCs) and intensifies aortic aneurysm through the regulation of calcium-dependent pathways and endoplasmic reticulum stress. Our hypothesis is that additional mechanisms are involved in aortic aneurysm and atherosclerosis induced by SERCA2 dysfunction from the perspective of ASMC phenotypic transformation.

Methods & Results: In SERCA2 dysfunctional mice and their control littermates, ASMCs were isolated to analyze protein expression and cell functions, and angiotensin II was infused into these mice that were backcrossed into LDL receptor deficient background to induce aortic aneurysm and atherosclerosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!