Myofiber necrosis and fibrosis are hallmarks of Duchenne muscular dystrophy (DMD), leading to lethal weakness of the diaphragm. Macrophages (MPs) are required for successful muscle regeneration, but the role of inflammatory monocyte (MO)-derived MPs in either promoting or mitigating DMD is unclear. We show that DMD (mdx) mouse diaphragms exhibit greatly increased expression of CCR2 and its chemokine ligands, along with inflammatory (Ly6C(high)) MO recruitment and accumulation of CD11b(high) MO-derived MPs. Loss-of-function of CCR2 preferentially reduced this CD11b(high) MP population by impeding the release of Ly6C(high) MOs from the bone marrow but not the splenic reservoir. CCR2 deficiency also helped restore the MP polarization balance by preventing excessive skewing of MPs toward a proinflammatory phenotype. These effects were linked to amelioration of histopathological features and increased muscle strength in the diaphragm. Chronic inhibition of CCR2 signaling by mutated CCL2 secreted from implanted mesenchymal stem cells resulted in similar improvements. These data uncover a previously unrecognized role of inflammatory MOs in DMD pathogenesis and indicate that CCR2 inhibition could offer a novel strategy for DMD management.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4237472PMC
http://dx.doi.org/10.15252/emmm.201403967DOI Listing

Publication Analysis

Top Keywords

duchenne muscular
8
muscular dystrophy
8
role inflammatory
8
mo-derived mps
8
ccr2
6
dmd
5
inflammatory
4
inflammatory monocytes
4
monocytes promote
4
promote progression
4

Similar Publications

Prophylactic Use of Cardiac Medications and Survival in Duchenne Muscular Dystrophy.

Muscle Nerve

January 2025

Stead Family Department of Pediatrics, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA.

Introduction/aims: Prophylactic treatment of left ventricular dysfunction (LVD) in Duchenne muscular dystrophy (DMD) delays onset of LVD, but there is limited data showing impact on survival. Our aim was to describe survival among treated and untreated individuals with DMD.

Methods: Retrospective, population-based surveillance data from the Muscular Dystrophy Surveillance, Tracking and Research Network (MD STARnet) were used.

View Article and Find Full Text PDF

CRISPR-Cas9 in Cardiovascular Medicine: Unlocking New Potential for Treatment.

Cells

January 2025

Department of Histology and Embryology and Vascular Biology Student Research Club, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland.

Cardiovascular diseases (CVDs) remain a significant global health challenge, with many current treatments addressing symptoms rather than the genetic roots of these conditions. The advent of CRISPR-Cas9 technology has revolutionized genome editing, offering a transformative approach to targeting disease-causing mutations directly. This article examines the potential of CRISPR-Cas9 in the treatment of various CVDs, including atherosclerosis, arrhythmias, cardiomyopathies, hypertension, and Duchenne muscular dystrophy (DMD).

View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD) is a severe genetic muscle disease occurring due to mutations of the dystrophin gene. There is no cure for DMD. Using a dystrophinutrophin (DKO-Hom) mouse model, we investigated the PGE2/EP2 pathway in the pathogenesis of dystrophic muscle and its potential as a therapeutic target.

View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD) is a genetic disease characterized by a lack of dystrophin caused by mutations in the DMD gene, and some minor cases are due to decreased levels of dystrophin, leading to muscle weakness and motor impairment. Creatine supplementation has demonstrated several benefits for the muscle, such as increased strength, enhanced tissue repair, and improved ATP resynthesis. This preliminary study aimed to investigate the effects of creatine on the gastrocnemius muscle in dystrophy muscle (MDX) and healthy C57BL/10 mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!