Epidemiological studies demonstrate robust correlations between green tea consumption and reduced risk of type 2 diabetes and its cardiovascular complications. However, underlying molecular, cellular, and physiological mechanisms remain incompletely understood. Health promoting actions of green tea are often attributed to epigallocatechin gallate (EGCG), the most abundant polyphenol in green tea. Insulin resistance and endothelial dysfunction play key roles in the pathogenesis of type 2 diabetes and its cardiovascular complications. Metabolic insulin resistance results from impaired insulin-mediated glucose disposal in skeletal muscle and adipose tissue, and blunted insulin-mediated suppression of hepatic glucose output that is often associated with endothelial/ vascular dysfunction. This endothelial dysfunction is itself caused, in part, by impaired insulin signaling in vascular endothelium resulting in reduced insulin-stimulated production of NO in arteries, and arterioles that regulate nutritive capillaries. In this review, we discuss the considerable body of literature supporting insulin-mimetic actions of EGCG that oppose endothelial dysfunction and ameliorate metabolic insulin resistance in skeletal muscle and liver. We conclude that EGCG is a promising therapeutic to combat cardiovascular complications associated with the metabolic diseases characterized by reciprocal relationships between insulin resistance and endothelial dysfunction that include obesity, metabolic syndrome and type 2 diabetes. There is a strong rationale for well-powered randomized placebo controlled intervention trials to be carried out in insulin resistant and diabetic populations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4909506PMC
http://dx.doi.org/10.2174/0929867321666141012174553DOI Listing

Publication Analysis

Top Keywords

green tea
16
insulin resistance
16
endothelial dysfunction
16
type diabetes
12
cardiovascular complications
12
actions green
8
epigallocatechin gallate
8
diabetes cardiovascular
8
resistance endothelial
8
metabolic insulin
8

Similar Publications

The insecticide susceptibility of Waterhouse (Hemiptera: Miridae) is being evaluated using shoot and glass-vial assay as described by IRAC. However, the reliability of the assay depends on feeding preference and contact toxicity. Hence, the cocoa pod was used as a substrate to test the susceptibility of in comparison with existing methods.

View Article and Find Full Text PDF

Alaska's Flora as a Treatment for Cancer.

Int J Biopharm Sci

December 2024

Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham NH 03824.

Cancer is an extraordinarily complex illness, with many tumors ultimately developing resistance to the currently available therapeutics. This highlights a need for the discovery of new anticancer medicines. Natural products have been utilized for centuries by the indigenous people of Alaska for both spiritual and medicinal purposes and have traditionally been administered as medicine for a wide range of ailments from the common cold to cancer.

View Article and Find Full Text PDF

Coordination-driven metallo-supramolecular polymers hold significant potential as highly efficient catalysts for photocatalytic CO reduction, owing to the covalent integration of the light harvesting unit, catalytic center and intrinsic hierarchical nanostructures. In this study, we present the synthesis, characterization, and gelation behaviour of a novel low molecular weight gelator (LMWG) integrating a benzo[1,2-:4,5-']dithiophene core with terpyridine (TPY) units alkyl amide chains (TPY-BDT). The two TPY ends of the TPY-BDT unit efficiently chelate with metal ions, enabling the formation of a metallo-supramolecular polymer that brings together the catalytic center and a photosensitizer in close proximity, maximizing catalytic efficiency for CO reduction.

View Article and Find Full Text PDF

Tea flower, with characteristic flavor formed during blooming, are a significant tea resource. However, studies on the volatile compounds of tea flower and their aroma characteristics during flowering are scarce. In this study, the odor characteristics of tea flower during blooming were comprehensively investigated by GC-MS, PCA, ACI determination and sensory evaluation.

View Article and Find Full Text PDF

Metabolic profiles and potential antioxidant mechanisms of hawk tea.

Sci Rep

January 2025

Department of Food Science and Engineering, Moutai Institute, Renhuai, 564502, People's Republic of China.

Hawk tea has received increasing attention for its unique flavor and potential health benefits, with antioxidant function being one of its significant bioactivities. However, the metabolic profiles, potential antioxidant components, and action mechanisms of different types of hawk tea are still unclear. In this study, the chemical components of five hawk teas were determined using untargeted metabolomics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!