Objective: To evaluate the the possible neurotoxic effects of sulfite and the protective potential of curcumin on the deep cerebellar nuclei using stereological methods.

Methods: The rats were randomly divided into five experimental groups (n=6): Group I: distilled water, Group II: Olive oil, Group III: Curcumin (100 mg/kg/day), Group IV: Sodium metabisulfite (25 mg/kg/day), and Group V: Sodium metabisulfite+curcumin. At the end of 56 d, the right cerebellar hemispheres were removed and assigned to stereological studies. The total volume and total neuron number of deep cerebellar nuclei were assessed using Cavalieri and optical disector methods, respectively.

Results: The data showed ∼20% and ∼16% decrease was respectively observed in the total volume and the total neuron number of the deep cerebellar nuclei of the sulfite-treated rats in comparison to the distilled water group (P<0.04). However, no significant change was observed in the total volume and neuronal number of the deep cerebellar nuclei in sulfite+curcumin-treated rats and curcumin played a protective role against sulfite. Curcumin or its vehicle (olive oil) did not induce any significant changes.

Conclusions: Curcumin, the main part of the turmeric, could prevent the structural changes induced in the deep cerebellar nuclei by sodium metabisulfite, a preservative agent, in rats.

Download full-text PDF

Source
http://dx.doi.org/10.1016/S1995-7645(14)60250-9DOI Listing

Publication Analysis

Top Keywords

deep cerebellar
16
cerebellar nuclei
16
sodium metabisulfite
8
distilled water
8
water group
8
mg/kg/day group
8
group sodium
8
total volume
8
volume total
8
total neuron
8

Similar Publications

Background: While the apolipoprotein E (APOE) ε4 allele is a well-known risk factor for late-onset Alzheimer's disease (LOAD), not all carriers develop the condition, suggesting the presence of resilience and/or risk factors. The molecular signatures of resilience/risk in the brain, however, have not been thoroughly described, partly due to the scarcity of healthy APOEe4 carriers. This study addresses this gap using a novel multi-tissue, multi-omic dataset from the Religious Order Study and Memory and Aging Project cohorts highly enriched in APOEe4 carriers with and without LOAD.

View Article and Find Full Text PDF

The cerebellum is activated by noxious stimuli and pathological pain but its role in noxious information processing remains unknown. Here, we show that in mice, cutaneous noxious electrical stimuli induced noradrenaline (NA) release from locus coeruleus (LC) terminals in the cerebellar cortex. Bergmann glia (BG) accumulated these LC-NA signals by increasing intracellular calcium in an integrative manner ('flares').

View Article and Find Full Text PDF

As brain-machine interfaces (BMI) are growingly used in clinical settings, understanding how to apply brain stimulation is increasingly important. Despite the emergence of optogenetic techniques, ethical and medical concerns suggest that interventions that are safe and non-invasive, such as Transcranial Alternating Current Stimulation (tACS), are more likely to be employed in human in the near future. Consequently, the question of how and where to apply current stimulation is becoming increasingly important for the efficient neuromodulation of both neurological and psychiatric disorders.

View Article and Find Full Text PDF

Biological systems are complex, encompassing intertwined spatial, molecular and functional features. However, methodological constraints limit the completeness of information that can be extracted. Here, we report the development of INSIHGT, a non-destructive, accessible three-dimensional (3D) spatial biology method utilizing superchaotropes and host-guest chemistry to achieve homogeneous, deep penetration of macromolecular probes up to centimeter scales, providing reliable semi-quantitative signals throughout the tissue volume.

View Article and Find Full Text PDF

T* relaxometry of fetal brain structures using low-field (0.55T) MRI.

Magn Reson Med

December 2024

Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.

Purpose: Human brain development during gestation is complex, as both structure and function are rapidly forming. Structural imaging methods using MRI are well developed to explore these changes, but functional imaging tools are lacking. Low-field MRI is a promising modality to bridge this gap.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!