Next-generation sequencing of custom amplicons to improve coverage of HaloPlex multigene panels.

Biotechniques

ARUP Institute for Clinical and Experimental Pathology, 84108, Salt Lake City, UT; Department of Pathology, University of Utah School of Medicine, 84112, Salt Lake City, UT.

Published: October 2014

Next-generation sequencing (NGS) of multigene panels performed for genetic clinical diagnostics requires 100% coverage of all targeted genes. In the genetic diagnostics laboratory, coverage gaps are typically filled with Sanger sequencing after NGS data are collected and analyzed. Libraries prepared using the hybridization-based custom capture HaloPlex method are covered at ~98% and include gaps in coverage because of the location of the restriction enzyme sites used for fragmentation and differences in the designed and actual library insert size. We describe a method for improving the coverage of HaloPlex libraries by generating a set of amplicons spanning known low-coverage regions that are pooled, indexed by sample, and sequenced together with the HaloPlex libraries. This approach reduces the number of post-NGS Sanger sequencing reactions required and complements any NGS library preparation method when complete gene coverage is necessary.

Download full-text PDF

Source
http://dx.doi.org/10.2144/000114217DOI Listing

Publication Analysis

Top Keywords

next-generation sequencing
8
coverage haloplex
8
multigene panels
8
sequencing ngs
8
sanger sequencing
8
haloplex libraries
8
coverage
6
sequencing custom
4
custom amplicons
4
amplicons improve
4

Similar Publications

Skmer approach improves species discrimination in taxonomically problematic genus (Theaceae).

Plant Divers

November 2024

CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, PR China.

Genome skimming has dramatically extended DNA barcoding from short DNA fragments to next generation barcodes in plants. However, conserved DNA barcoding markers, including complete plastid genome and nuclear ribosomal DNA (nrDNA) sequences, are inadequate for accurate species identification. Skmer, a recently proposed approach that estimates genetic distances among species based on unassembled genome skims, has been proposed to effectively improve species discrimination rate.

View Article and Find Full Text PDF

Background: Targeted next-generation sequencing (tNGS) is promising alternative to phenotypic drug susceptibility testing (pDST) for detecting drug-resistant tuberculosis (DRTB). This study explored the potential cost-effectiveness of tNGS for the diagnosis of DR-TB across 3 settings: India, South Africa and Georgia.

Methods: To inform WHO guideline development group (GDG) on tNGS we developed a stochastic decision analysis model and assessed cost-effectiveness of tNGS for DST among rifampicin resistance individuals.

View Article and Find Full Text PDF

Osteosarcoma (OS) is the most common malignant bone tumor affecting adolescents and young adults and it usually occurs in the long bones of the extremities. The detection of cancer-related genetic alterations has a growing effect in guiding diagnosis, prognosis and targeted therapies. However, little is known about the molecular aspects involved in the etiology and progression of OS, which limits options for targeted therapies.

View Article and Find Full Text PDF

The advent of personalized and precision medicine has revolutionized oncology and treatment of gynecological cancer. These innovative approaches tailor treatments to individual patient profiles beyond genetic markers considering environmental and lifestyle factors, thereby optimizing therapeutic efficacy and minimizing adverse effects. Precision medicine uses advanced genomic technologies such as next-generation sequencing to perform comprehensive tumor profiling.

View Article and Find Full Text PDF

The article provides a thorough and up-to-date analysis of the role that microRNAs (miRNAs) within the realm of cancer therapy, paying specific attention to their diagnostic, prognostic as well as therapeutic capabilities. The miRNAs (small non-coding RNAs) are the current major genes that regulate gene expression. They are a key factor in the genesis of cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!