Uncovering the peptide-binding specificities of HLA-C: a general strategy to determine the specificity of any MHC class I molecule.

J Immunol

Laboratory of Experimental Immunology, Department of International Health, Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark;

Published: November 2014

MHC class I molecules (HLA-I in humans) present peptides derived from endogenous proteins to CTLs. Whereas the peptide-binding specificities of HLA-A and -B molecules have been studied extensively, little is known about HLA-C specificities. Combining a positional scanning combinatorial peptide library approach with a peptide-HLA-I dissociation assay, in this study we present a general strategy to determine the peptide-binding specificity of any MHC class I molecule. We applied this novel strategy to 17 of the most common HLA-C molecules, and for 16 of these we successfully generated matrices representing their peptide-binding motifs. The motifs prominently shared a conserved C-terminal primary anchor with hydrophobic amino acid residues, as well as one or more diverse primary and auxiliary anchors at P1, P2, P3, and/or P7. Matrices were used to generate a large panel of HLA-C-specific peptide-binding data and update our pan-specific NetMHCpan predictor, whose predictive performance was considerably improved with respect to peptide binding to HLA-C. The updated predictor was used to assess the specificities of HLA-C molecules, which were found to cover a more limited sequence space than HLA-A and -B molecules. Assessing the functional significance of these new tools, HLA-C*07:01 transgenic mice were immunized with stable HLA-C*07:01 binders; six of six tested stable peptide binders were immunogenic. Finally, we generated HLA-C tetramers and labeled human CD8(+) T cells and NK cells. These new resources should support future research on the biology of HLA-C molecules. The data are deposited at the Immune Epitope Database, and the updated NetMHCpan predictor is available at the Center for Biological Sequence Analysis and the Immune Epitope Database.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4226424PMC
http://dx.doi.org/10.4049/jimmunol.1401689DOI Listing

Publication Analysis

Top Keywords

mhc class
12
hla-c molecules
12
peptide-binding specificities
8
specificities hla-c
8
general strategy
8
strategy determine
8
specificity mhc
8
class molecule
8
hla-a molecules
8
netmhcpan predictor
8

Similar Publications

Here, we explore the relationship between dietary fibers, colonic epithelium major histocompatibility complex class II (MHC-II) expression, and immune cell interactions in regulating susceptibility to Clostridioides difficile infection (CDI). We find that a low-fiber diet increases MHC-II expression in the colonic epithelium, which, in turn, worsens CDI by promoting the development of pathogenic CD4 intraepithelial lymphocytes (IELs). The influence of dietary fibers on MHC-II expression is mediated by its metabolic product, acetate, and its receptor, free fatty acid receptor 2 (FFAR2).

View Article and Find Full Text PDF

Background: Hypomethylating agents (HMA), such as azacytidine (AZA) and decitabine (DAC), are epigenetic therapies used to treat some patients with acute myeloid leukaemia (AML) and myelodysplastic syndrome. HMAs act in a replication-dependent manner to remove DNA methylation from the genome. However, AML cells targeted by HMA therapy are often quiescent within the bone marrow, where oxygen levels are low.

View Article and Find Full Text PDF

Cancer cells frequently rewire their metabolism to support proliferation and evade immune surveillance, but little is known about metabolic targets that could increase immune surveillance. Here we show a specific means of mitochondrial respiratory complex I (CI) inhibition that improves tumor immunogenicity and sensitivity to immune checkpoint blockade (ICB). Targeted genetic deletion of either Ndufs4 or Ndufs6, but not other CI subunits, induces an immune-dependent growth attenuation in melanoma and breast cancer models.

View Article and Find Full Text PDF

A constitutive interferon-high immunophenotype defines response to immunotherapy in colorectal cancer.

Cancer Cell

January 2025

Cancer Systems Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Centre for Cancer Evolution, Bart's Cancer Institute, Queen Mary University London, London EC1M 6AU, UK. Electronic address:

Fewer than 50% of metastatic deficient mismatch repair (dMMR) colorectal cancer (CRC) patients respond to immune checkpoint inhibition (ICI). Identifying and expanding this patient population remains a pressing clinical need. Here, we report that an interferon-high immunophenotype locally enriched in cytotoxic lymphocytes and antigen-presenting macrophages is required for response.

View Article and Find Full Text PDF

In silico functional analysis of the human, chimpanzee, and gorilla MHC-A repertoires.

Immunogenetics

January 2025

Theoretical Biology and Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands.

T cells recognize peptides displayed on the surface of cells on MHC molecules. Genetic variation in MHC genes alters their peptide-binding repertoire and thus influences the potential immune response generated against pathogens. Both gorillas and chimpanzees show reduced diversity at their MHC class I A (MHC-A) locus compared to humans, which has been suggested to be the result of a pathogen-mediated selective sweep.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!