Computational simulation and preparation of fluorescent magnetic molecularly imprinted silica nanospheres for ciprofloxacin or norfloxacin sensing.

J Sep Sci

State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, P. R. China; Department of Resources and Environment, Jilin Agriculture University, Changchun, P. R. China.

Published: December 2014

AI Article Synopsis

  • A new sensor that can detect ciprofloxacin and norfloxacin in human urine was created using advanced materials like cadmium telluride quantum dots and ferroferric oxide nanoparticles.
  • The sensor was characterized using various techniques, including microscopy and spectroscopy, to ensure its effectiveness and sensitivity.
  • It can detect very low concentrations of these antibiotics in urine, with a detection limit of 130 ng/mL, and a computational study helped optimize the sensor's polymerization process.

Article Abstract

A magnetic molecularly imprinted fluorescent sensor for the sensitive and convenient determination of ciprofloxacin or norfloxacin in human urine was synthesized and characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, ultraviolet/visible spectroscopy, and fluorescence spectroscopy. Both cadmium telluride quantum dots and ferroferric oxide nanoparticles are introduced into the polymer for the rapid separation and detection of the target molecules. The synthesized molecularly imprinted polymers were applied to detect ciprofloxacin or its structural analog norfloxacin in human urine with the detection limit 130 ng/mL. A computational study was developed to evaluate the template-monomer geometry and interaction energy in the polymerization mixture to determine the reaction molar ratio of the template and monomer molecules.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jssc.201401014DOI Listing

Publication Analysis

Top Keywords

molecularly imprinted
12
magnetic molecularly
8
ciprofloxacin norfloxacin
8
norfloxacin human
8
human urine
8
computational simulation
4
simulation preparation
4
preparation fluorescent
4
fluorescent magnetic
4
imprinted silica
4

Similar Publications

In this work, magnetic molecularly imprinted polymer (MMIP) capable of selectively recognizing and adsorbing cordycepin was prepared. The MMIP was prepared using cordycepin as the template molecule, methacrylic acid and acrylamide as the functional monomer and ethylene glycol dimethacrylate as the crosslinker. The MMIP was analyzed using various techniques including transmission electron microscopy, thermogravimetric analysis, Fourier transform infrared spectroscopy, vibrating sample magnetometer and x-ray diffraction.

View Article and Find Full Text PDF

Diazepam (DZP) is a muscle-relaxing, anxiety-relieving sedative drug; nonetheless, it is also an addictive drug that may be abused. This work reports on the development of a novel electrochemical nanosensor for diazepam using SiO-encapsulated-3-mercaptopropionic acid-capped AuZnCeSeS quantum dots (QDs) overcoated with a molecularly imprinted polymer (MIP) on screen-printed carbon electrodes (SPCEs). Electrochemical, spectroscopic and electron microscopic characterization of the nanomaterial and modified electrode surface was carried out and is reported herein.

View Article and Find Full Text PDF

β-cyclodextrin imprinted film embedded with methylene blue: A host-guest sensitive electrochemical strategy for PFAS detection.

J Hazard Mater

December 2024

State Key Laboratory of Pollution Control and Resources Reuse (Tongji University), College of Environmental Science and Engineering, Tongji University, Shanghai 200092,  China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China. Electronic address:

Per- and polyfluoroalkyl substances (PFAS) have raised significant concerns; however, their accurate detection in aqueous environments remains a major challenge. In this study, a host-guest molecularly imprinted polymer-based electrochemical sensor with enhanced antifouling properties were developed using β-cyclodextrin embedded with methylene blue (βCD-MB MIP). This sensor demonstrated sensitive and selective quantification of perfluorooctanoic acid (PFOA) in real water samples.

View Article and Find Full Text PDF

A new RRS method for measurement of temperature with magnetic-liquid crystal nanosurface molecularly imprinted polymer probe.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China. Electronic address:

A new magnetic-liquid crystal nanosurface molecularly imprinted polymer (5CB-FeO@MIP) resonance Rayleigh scattering temperature sensor was prepared, using liquid crystal 4'-cyano-4'-pentylbiphenyl as the temperature sensing element, nano-FeO as the substrate, methacrylic acid as the functional monomer and ethylene glycol dimethacrylate as the crosslinking agent. It was characterized by molecular spectroscopy, scanning electron microscopy and Fourier transform infrared spectroscopy. The thermosensitive effect of 11 liquid crystals, that is, the relationship between RRS and temperature, was studied.

View Article and Find Full Text PDF

Background: Ciprofloxacin is a widely used antibiotic in medicine and agriculture. It can cause pollution to the environment and food, thereby affecting human health.

Objective: This study proposes the preparation of molecular imprinted fluorescent sensors and their selective detection of ciprofloxacin, with the aim of achieving specific recognition and accurate detection of ciprofloxacin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: